Learn More
Many plant disease resistance (R) genes encode proteins predicted to have an N-terminal coiled-coil (CC) domain, a central nucleotide-binding site (NBS) domain and a C-terminal leucine-rich repeat (LRR) domain. These CC-NBS-LRR proteins recognize specific pathogen-derived products and initiate a resistance response that often includes a type of cell death(More)
Rx in potato encodes a protein with a nucleotide binding site (NBS) and leucine-rich repeats (LRR) that confers resistance against Potato virus X. The NBS and LRR domains in Rx are present in many disease resistance proteins in plants and in regulators of apoptosis in animals. To investigate structure-function relationships of NBS-LRR proteins we exploited(More)
BACKGROUND & AIMS Barrett's esophagus (BE) increases the risk of esophageal adenocarcinoma (EAC). We found the risk to be BE has been associated with single nucleotide polymorphisms (SNPs) on chromosome 6p21 (within the HLA region) and on 16q23, where the closest protein-coding gene is FOXF1. Subsequently, the Barrett's and Esophageal Adenocarcinoma(More)
A major class of disease-resistance (R) genes in plants encode nucleotide-binding site/leucine-rich repeat (LRR) proteins. The LRR domains mediate recognition of pathogen-derived elicitors. Here we describe a random in vitro mutation analysis illustrating how mutations in an R protein (Rx) LRR domain generate disease-resistance specificity. The original Rx(More)
OBJECTIVES We investigated the molecular epidemiology of uropathogenic Escherichia coli (UPEC) from a tertiary care hospital in Riyadh, Saudi Arabia, revealing, for the first time, the population structure of UPEC in the region. METHODS A total of 202 UPEC isolates were recovered from hospital and community patients with urinary tract infection in(More)
  • 1