Learn More
Interaction between cell surface integrin receptors with extracellular matrix (ECM) plays an important role in cell survival, proliferation, and migration including tumor development and invasion. Binding of ECM to integrins initiates intracellular signaling cascades, modulating expression and activity of different matrix metalloproteinases (MMPs) which is(More)
The complex signaling networks between cancer cells and adjacent endothelial cells make it challenging to unravel how cancer cells send extracellular messages to promote aberrant vascularization or tumor angiogenesis. Here, in vitro and in vivo models show that pancreatic cancer cell generated unique microenvironments can underlie endothelial cell migration(More)
Cell adhesion to extracellular matrix initiates intracellular signaling cascade regulated by integrin family of receptors. Evidences show that cultured cells in presence of extracellular matrix adhesion molecule Fibronectin (FN) stimulates secretion of matrix metalloproteinases (MMPs), facilitating cancer cell invasion. Amongst all MMPs, MMP-9 is often(More)
Interaction between cell surface integrin receptors and extracellular matrix (ECM) components plays an important role in cell survival, proliferation, and migration, including tumor development and invasion of tumor cells. Matrix metalloproteinases (MMPs) are a family of metalloproteinases capable of digesting ECM components and are important molecules for(More)
Acetylsalicylic acid (ASA), also known as aspirin, a classic, nonsteroidal, anti-inflammatory drug (NSAID), is widely used to relieve minor aches and pains and to reduce fever. Epidemiological studies and other experimental studies suggest that ASA use reduces the risk of different cancers including breast cancer (BC) and may be used as a chemopreventive(More)
Interaction between cell surface integrin receptors and extracellular matrix (ECM) components plays an important role in cell survival, proliferation and migration including tumor development and invasion. Matrix metalloproteinases (MMP) are a family of metalloproteinases capable of digesting ECM and facilitate cell migration. Binding of ECM to integrins(More)
The matricellular protein CCN5/WISP-2 represents a promising target in triple-negative breast cancer (TNBC) because treatment or induced activation of CCN5 in TNBC cells promotes cell growth arrest at the G0/G1 phase, reduces cell proliferation and delays tumor growth in the xenograft model. Our studies found that the p27(Kip1) tumor suppressor protein is(More)
Decades of basic and translational studies have identified the mechanisms by which pancreatic cancer cells use molecular pathways to hijack the normal homeostasis of the pancreas, promoting pancreatic cancer initiation, progression, and metastasis, as well as drug resistance. These molecular pathways were explored to develop targeted therapies to prevent or(More)
Exosomes, which act as biological cargo vessels, are cell-released, phospholipid-enclosed vesicles. In eukaryotic cells, exosomes carry and exchange biological materials or signals for the benefit or detriment to the cells. Thereby, we consider exosomes to be molecular Palkis (carriers). Although exosomes are currently one of the most popularly researched(More)
Breast cancer progression and relapse is conceivably due to tumor initiating cells (TICs)/cancer stem cells. EMT (epithelial-mesenchymal-transition)-signaling regulates TICs' turnover. However, the mechanisms associated with this episode are unclear. We show that, in triple-negative-breast cancer (TNBC) cells enriched with TICs, CCN5 significantly blocks(More)