Learn More
A physiological examination of mice harboring a null allele at the aryl hydrocarbon (Ah) locus revealed that the encoded aryl hydrocarbon receptor plays a role in the resolution of fetal vascular structures during development. Although the aryl hydrocarbon receptor is more commonly studied for its role in regulating xenobiotic metabolism and dioxin(More)
The Ah receptor (AHR) mediates the metabolic adaptation to a number of planar aromatic chemicals. Essential steps in this adaptive mechanism include AHR binding of ligand in the cytosol, translocation of the receptor to the nucleus, dimerization with the Ah receptor nuclear translocator, and binding of this heterodimeric transcription factor to(More)
Three-dimensional (3D) reconstruction from serial sections allows identification of objects of interest in 3D and clarifies the relationship among these objects. 3D_Viewer, developed in our laboratory for this purpose, has four major functions: image alignment, movie frame production, movie viewing, and shift-overlay image generation. Color images captured(More)
The aryl hydrocarbon receptor (AHR) is known for its role in the adaptive and toxic responses to a large number of environmental contaminants, as well as its role in hepatovascular development. The classical AHR pathway involves ligand binding, nuclear translocation, heterodimerization with the AHR nuclear translocator (ARNT), and binding of the heterodimer(More)
A developmental role for the Ahr locus has been indicated by the observation that mice harboring a null allele display a portocaval vascular shunt throughout life. To define the ontogeny and determine the identity of this shunt, we developed a visualization approach in which three-dimensional (3D) images of the developing liver vasculature are generated(More)
  • 1