Ganna Berezovska

  • Citations Per Year
Learn More
Recent advances in computational power and simulation programs finally delivered the first examples of reversible folding for small proteins with an all-atom description. But having at hand the atomistic details of the process did not lead to a straightforward interpretation of the mechanism. For the case of the Fip35 WW-domain where multiple long(More)
Molecular simulations as well as single molecule experiments have been widely analyzed in terms of order parameters, the latter representing candidate probes for the relevant degrees of freedom. Notwithstanding this approach is very intuitive, mounting evidence showed that such descriptions are inaccurate, leading to ambiguous definitions of states and(More)
BACKGROUND The nature of ligand motion in proteins is difficult to characterize directly using experiment. Specifically, it is unclear to what degree these motions are coupled. METHODS All-atom simulations are used to sample ligand motion in truncated Hemoglobin N. A transition network analysis including ligand- and protein-degrees of freedom is used to(More)
We consider polymer structures which are known in the mathematical literature as "cospectral." Their graphs have (in spite of the different architectures) exactly the same Laplacian spectra. Now, these spectra determine in Gaussian (Rouse-type) approaches many static as well as dynamical polymer characteristics. Hence, in such approaches for cospectral(More)
The ligand migration network for O2-diffusion in truncated Hemoglobin N is analyzed based on three different clustering schemes. For coordinate-based clustering, the conventional k-means and the kinetics-based Markov Clustering (MCL) methods are employed, whereas the locally scaled diffusion map (LSDMap) method is a collective-variable-based approach. It is(More)
Based on the success of the maximum entropy principle (MEP) in the study of semiflexible treelike polymers [M. Dolgushev and A. Blumen, J. Chem. Phys. 131, 044905 (2009)], it is of much interest to establish MEP's potential for general semiflexible polymers which contain loops. Here, we embark on this endeavor by considering discrete semiflexible polymer(More)
  • 1