Learn More
Thiothymidine has a potential application as a photosensitizer in cancer photodynamic therapy (PDT). As the chromophore of thiothymidine, 2-thiothymine exhibits ultrahigh quantum yield of intersystem crossing to the lowest triplet state T(1) (ca. 100%), which contrasts with the excited-state behavior of the natural thymine that dissipates excess electronic(More)
Motivated by its potential use as a photosensitizer in photodynamic therapy, we report the first ab initio quantum mechanics/molecular mechanics (QM/MM) study of 4-thiothymidine in aqueous solution. The core chromophore 4-thiothymine was described using the multiconfigurational CASSCF and CASPT2 QM methods, while the ribose and the solvent water molecules(More)
The photophysics of thiothymines has been extensively studied computationally in the past few years due to their significant potential as photosensitizers in photodynamic therapy. However, the corresponding computational studies of the photophysical mechanism of 2,4-dithiothymine are scarce. Herein we have employed the CASPT2//CASSCF and(More)
Ultrahigh quantum yields of intersystem crossing to the lowest triplet state T1 are observed for 2-thiouracils (2TU), which is in contrast to the natural uracils that predominantly exhibit ultrafast internal conversion to the ground state upon excitation to the singlet excited state. The intersystem crossing mechanism of 2TU has recently been investigated(More)
In commonly studied GFP chromophore analogues such as 4-(4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (PHBDI), the dominant photoinduced processes are cis-trans isomerization and subsequent S(1) → S(0) decay via a conical intersection characterized by a highly twisted double bond. The recently synthesized 2-hydroxy-substituted isomer (OHBDI)(More)
The ultrafast S(1)((1)ππ*) → S(0) deactivation process of thiophene in the gas phase has been simulated with the complete active space self-consistent field (CASSCF) based fewest switch surface hopping method. It was found that most of the calculated trajectories (∼80%) decay to the ground state (S(0)) with an averaged time constant of 65 ± 5 fs. This is in(More)
We report a computational study on the photochemistry of the prototypical aromatic Schiff base salicylideneaniline in the gas phase using static electronic structure calculations (TDDFT, OM2/MRCI) and surface-hopping dynamics simulations (OM2/MRCI). Upon photoexcitation of the most stable cis-enol tautomer into the bright S1 state, we find an ultrafast(More)
Time-dependent density functional theory (TDDFT) has broad application in the study of electronic response, excitation and transport. To extend such application to large and complex systems, we develop a reformulation of TDDFT equations in terms of non-orthogonal localized molecular orbitals (NOLMOs). NOLMO is the most localized representation of electronic(More)
Indigo (1) is stable when exposed to ultraviolet light. We employ electronic structure calculations and nonadiabatic trajectory surface-hopping dynamics simulations to study the photoinduced processes and the photoprotection mechanism of an indigo model, bispyrroleindigo (2). Consistent with recent static ab initio calculations on 1 and 2 (Phys. Chem. Chem.(More)