Learn More
We propose a general information-theoretic approach to semi-supervised metric learning called SERAPH (SEmi-supervised metRic leArning Paradigm with Hypersparsity) that does not rely on the manifold assumption. Given the probability parameterized by a Mahalanobis distance, we maximize its entropy on labeled data and minimize its entropy on unlabeled data(More)
The αvβ3 integrin represents a potential target for noninvasive imaging of angiogenesis. The purpose of this study was to evaluate a novel one-step labeled integrin αvβ3-targeting positron emission tomography (PET) probe, 18F-AlF-NOTA-PRGD2, for angiogenesis imaging in a myocardial infarction/reperfusion (MI/R) animal model. Male Sprague-Dawley rats(More)
We evaluated noninvasive positron emission tomography (PET) imaging for monitoring tumor response to the VEGFR-2 tyrosine kinase (TK) inhibitor ZD4190 during cancer therapy. Orthotopic MDA-MB-435 tumor-bearing mice were treated with ZD4190 (100 mg/kg orally per day for three consecutive days). Tumor growth was monitored by caliper measurement. During the(More)
Transfer learning aims at leveraging the knowledge in labeled source domains to predict the unlabeled data in a target domain, where the distributions are different in domains. Among various methods for transfer learning, one kind of algorithms focus on the correspondence between bridge features and all the other specific features from different domains,(More)
The integrin family plays important roles during tumor angiogenesis, the formation of new blood vessels from pre-existing vasculature. Traditional structural and functional imaging techniques are not sufficient for early lesion detection, patient stratification, or monitoring the therapeutic efficacy against cancer. Molecular imaging, the visualization,(More)
New blood vessel formation (angiogenesis) is fundamental to tumor growth, invasion, and metastatic dissemination. The vascular endothelial growth factor (VEGF) signaling pathway plays pivotal roles in regulating tumor angiogenesis. VEGF as a therapeutic target has been validated in various types of human cancers. Different agents including antibodies,(More)
Labeling biomolecules with ¹⁸F is usually done through coupling with prosthetic groups, which requires several time-consuming radiosynthesis steps and therefore in low labeling yield. In this study, we designed a simple one-step ¹⁸F-labeling strategy to replace the conventional complex and the long process of multiple-step radiolabeling procedure. Both(More)
In many cases cancer is caused by gene deficiency that is being passed along from generation to generation. Soluble carbon nanotubes (CNTs) have shown promising applications in the diagnosis and therapy of cancer, however, the potential relationship between cancer-prone individuals and response to CNT exposure as a prerequisite for development of(More)
[(18)F]FPPRGD2, an F-18 labeled dimeric cyclic RGDyK peptide, has favorable properties for PET imaging of angiogenesis by targeting the α(v)β(3) integrin receptor. This radiotracer has been approved by the FDA for use in clinical trials. However, the time-consuming multiple-step synthetic procedure required for its preparation may hinder the widespread(More)
Molecular imaging using positron emission tomography (PET) radiotracers targeted to tumor vasculature offers a noninvasive method for early detection of tumor angiogenesis and efficient monitoring of response to anti-tumor vasculature therapy. The previous in vitro results demonstrated that the GX1 peptide, identified by phage display technology, is a tumor(More)