Learn More
Sulfur is a macronutrient that is necessary for plant growth and development. Sulfate, a major source of sulfur, is taken up by plant roots and transported into various tissues for assimilation. During sulfate limitation, expression of miR395 is significantly up-regulated. miR395 targets two families of genes, ATP sulfurylases (encoded by APS genes) and(More)
microRNAs (miRNAs) are a class of negative regulators that take part in many processes such as growth and development, stress responses, and metabolism in plants. Recently, miRNAs were shown to function in plant nutrient metabolism. Moreover, several miRNAs were identified in the response to nitrogen (N) deficiency. To investigate the functions of other(More)
— Network monitoring and diagnosis are key to improving network performance. The difficulties of performance monitoring lie in today's fast growing Internet, accompanied by increasingly heterogeneous and unregulated structures. Moreover, these tasks become even harder since one cannot rely on the collaboration of individual routers and servers to directly(More)
Nitrogen is an essential macronutrient required for plant growth and development. A number of genes respond to nitrogen starvation conditions. However, the functions of most of these nitrogen starvation-responsive genes are unclear. Our recent survey suggested that many microRNAs (miRNAs) are responsive to nitrogen starvation in Arabidopsis thaliana. Here,(More)
Sulfotransferase 1A1, an important member of sulfotransferase superfamily, is involved in the biotransformation of many compounds including tobacco carcinogens. A single nucleotide polymorphism (G638A) in the sulfotransferase 1A1 (SULT1A1) gene causes Arg213His amino acid change and consequently results in significantly reduced enzyme activity and(More)
The precise control of gene regulation, and hence, correct spatiotemporal tissue patterning, is crucial for plant development. Plant microRNAs can constrain the expression of their target genes at posttranscriptional levels. Recently, microRNA396 (miR396) has been characterized to regulate leaf development by mediating cleavage of its GROWTH-REGULATING(More)
The matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) have been shown to play important roles in multiple ways in all stages of cancer initiation and development. Single nucleotide polymorphisms identified in the promoters of MMP2 (-1306C-->T) and TIMP2 (-418G-->C) abolish the Sp1-binding site and thus may down-regulate(More)
Integrating carbon (C), nitrogen (N), and sulfur (S) metabolism is essential for the growth and development of living organisms. MicroRNAs (miRNAs) play key roles in regulating nutrient metabolism in plants. However, how plant miRNAs mediate crosstalk between different nutrient metabolic pathways is unclear. In this study, deep sequencing of Arabidopsis(More)