Ganesh A Prasanna

Learn More
The purpose of the present study was to establish a rat retinal ganglion cell line by transformation of rat retinal cells. For this investigation, retinal cells were isolated from postnatal day 1 (PN1) rats and transformed with the psi2 E1A virus. In order to isolate retinal ganglion cells (RGC), single cell clones were chosen at random from the transformed(More)
The aim of the study was to investigate the ocular hypotensive activity of a nitric oxide (NO)-donating latanoprost, BOL-303259-X, following topical administration. The effect of BOL-303259-X (also known as NCX 116 and PF-3187207) on intraocular pressure (IOP) was investigated in monkeys with laser-induced ocular hypertension, dogs with naturally-occurring(More)
PURPOSE To determine whether human optic nerve head astrocytes (hONAs) are target cells for the actions of endothelin (ET)-1, a potent vasoactive peptide, by causing astrocyte proliferation, as occurs in glaucomatous optic nerve heads. ET-1 levels are elevated in glaucomatous eyes, and administration of ET-1 to the retina causes glial activation and optic(More)
It has become increasingly clear that astrocytes may play an important role in the genesis of glaucoma. Astrogliosis occurs in response to ocular stress or the presence of noxious stimuli. Agents that appear to stimulate reactive gliosis are becoming increasingly clear. One class of agents that is emerging is the endothelins (ETs; specifically, ET-1). In(More)
The role of endothelin-1 (ET-1) a potent vasoactive peptide, in glaucoma pathogenesis is receiving increasing attention, particularly in astroglial activation in optic nerve damage. Our laboratory has also shown that ET-1 treatment causes proliferation of cultured human optic nerve head astrocytes to possibly initiate astrogliosis. ET-1 is distributed in(More)
PURPOSE Endothelin (ET)-1 levels are increased in aqueous and vitreous humor in patients with glaucoma and animal models of glaucoma. Whether the elevated ET-1 induces extracellular matrix (ECM) remodeling in the optic nerve head is still unknown. In the present study, the regulation of matrix metalloproteinases/tissue inhibitors of matrix(More)
Endothelin-1 (ET-1) lowers intraocular pressure (IOP) in animal models by regulating aqueous humour dynamics through both inflow and outflow mechanisms. Moreover, ET's concentration is elevated in glaucoma patients and in animal models of glaucoma. Glucocorticoid therapy often can lead to increase IOP in susceptible individuals including patients with(More)
Endothelin is an endogenous vasoactive peptide that is considered among the most potent vasoconstrictor substances known. In addition to its vascular effects, endothelins and their receptors have been shown to be present in the eye and to have a number of ocular actions that may be important for ocular homeostasis, but, in excess can be a potential(More)
Recent observations suggest that the vasoactive peptide endothelin-1 (ET-1) may be an important contributor to the etiology of glaucoma. ET-1 administration has been shown to produce optic nerve axonal loss and apoptosis of retinal ganglion cells. Ocular ET-1 levels are elevated in aqueous humor in response to elevated intraocular pressure both in glaucoma(More)
We have studied the distribution of endothelinergic molecules: prepro-endothelin-1 (PPET-1), endothelin-1 (ET-1), and receptors A and B (ET-A) and (ET-B) in the retina of mice. The localization of these molecules in normal mice was compared to their localization in retinas from animals submitted to continuous illumination during 1, 6, 9 or 18 days. We also(More)