Galuh D.N. Astuti

Learn More
PURPOSE Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous retinal disorder. Despite tremendous knowledge about the genes involved in RP, little is known about the genetic causes of RP in Indonesia. Here, we aim to identify the molecular genetic causes underlying RP in a small cohort of Indonesian patients, using genome-wide(More)
Over the last decade, huge progress has been made in the understanding of the molecular mechanisms underlying inherited retinal dystrophy (IRD), as well as in the development and implementation of novel therapies, especially in the field of gene therapy. The use of mutant animal models, either naturally occurring or generated by genetic modification, have(More)
PURPOSE The purpose of this study was to identify the underlying molecular genetic defect in an Indonesian family with three affected individuals who had received a diagnosis of retinitis pigmentosa (RP). METHODS Clinical evaluation of the family members included measuring visual acuity and fundoscopy, and assessing visual field and color vision. Genomic(More)
Leber congenital amaurosis (LCA) represents the most severe form of inherited retinal dystrophies with an onset during the first year of life. Currently, 21 genes are known to be associated with LCA and recurrent mutations have been observed in AIPL1, CEP290, CRB1 and GUCY2D. In addition, sequence analysis of LRAT and RPE65 may be important in view of(More)
PURPOSE To identify the genetic cause of and describe the phenotype in 4 families with autosomal recessive retinitis pigmentosa (arRP) that can be associated with pseudocoloboma. DESIGN Case series. PARTICIPANTS Seven patients from 4 unrelated families with arRP, among whom 3 patients had bilateral early-onset macular pseudocoloboma. METHODS We(More)
Bietti's crystalline dystrophy (BCD) is a rare, autosomal recessive retinal degenerative disease associated with mutations in CYP4V2. In this study, we describe the genetic and clinical findings in 19 unrelated BCD patients recruited from five international retinal dystrophy clinics. Patients underwent ophthalmic examinations and were screened for CYP4V2(More)
Purpose AGBL5, encoding ATP/GTP binding protein-like 5, was previously proposed as an autosomal recessive retinitis pigmentosa (arRP) candidate gene based on the identification of missense variants in two families. In this study, we performed next-generation sequencing to reveal additional RP cases with AGBL5 variants, including protein-truncating variants.(More)
  • 1