Learn More
Intraperitoneal guanosine has been shown to prevent quinolinic acid-induced seizures in mice. In this study, we investigated the effect of orally administered guanosine on seizures induced by the glutamate agonists quinolinic acid and kainate, and the endogenous glutamate releaser alpha-dendrotoxin. Guanosine (7.5 mg/kg, per os), administered 75 min in(More)
The migration of amacrine neuroblasts toward the prospective amacrine cell layer in the chick embryo retina has been studied, in Golgi-stained sections, between days 5 and 9 of embryogenesis. Two distinct populations of presumptive amacrine neuroblasts have been identified on the basis of their shape and migratory behavior. One population (smooth amacrine(More)
In G protein-coupled receptors, neurotransmitter-induced binding of GTP to G proteins triggers the activation of effector systems while simultaneously decreasing the affinity of the transmitter for its specific binding site within the receptor-G protein complex. In the present study we show that, in the chick optic tectum, guanine nucleotides inhibit the(More)
Adenylate cyclase activity and binding of neurotransmitters to some receptors can be modulated simultaneously by guanine nucleotides. Furthermore it has been shown, in different neurotransmitter systems, that the ability of GTP to inhibit agonist binding is related to the capacity of the transmitter to modulate adenylate cyclase activity. In the present(More)
When injected into the rat striatum, quinolinic acid causes dose-dependent widespread cell death. All cell types, including the NADPH-diaphorase-positive neurons appear to be sensitive to the toxin. The latter cells are destroyed by quinolinic acid injections of 180 nmol per striatum, this effect being blocked by the concomitant administration of 5 mg/kg of(More)
Adenine and guanine nucleotides have been shown to exert multiple roles in central and peripheral nervous systems, and the sequential breakdown of these nucleotides by enzymatic systems is an important step in the modulation of their extracellular effects. The aim of this study was to investigate whether nucleotide hydrolysis also occurs in the(More)
Brain glial cells secrete several molecules that can modulate the survival of neurons after various types of damage to the CNS. Activated microglia and astrocytes closely associate to amyloid plaques in Alzheimer Disease (AD). They could have a role in the neurotoxicity observed in AD because of the inflammatory reaction they generate. There is controversy(More)
Skeletal muscles of different vertebrate species contain, as it is the case in other cholinergic tissues, two classes of collagen-tailed, asymmetric forms (A-forms) of acetylcholinesterase (AChE). Class I A-forms are readily brought into solution in the presence of high salt, while class II A-forms do additionally require a chelating agent, such as EDTA,(More)
Metabotropic glutamate receptors (mGluRs) have been shown to modulate adenylate cyclase activity via G-proteins. In the present study we report similar results to the previously observed in the literature, showing that glutamate and the metabotropic agonists, 1S,3R-ACPD or quisqualate induced cAMP accumulation in hippocampal slices of young rats. Moreover,(More)
GMP-PNP, a non-hydrolyzable analog of GTP binds tightly to G-protein in the presence of Mg2+, so that the binding is stable even after exhaustive washings. This property was exploited to prepare membrane samples of rat brain where G-protein GTP-binding sites were saturated with GMP-PNP. Experiments carried out with these membranes showed that GTP, GMP-PNP,(More)