Learn More
Significantly higher temporal fluctuations of the blood oxygenation level-dependent (BOLD) signal in the living rat group compared to that in the dead rat group were observed in the cortex, suggesting the existence of physiological information in the signal fluctuations. A similar analysis shows significantly different fluctuations between visual cortical(More)
Changes in manganese-enhanced MRI (MEMRI) contrast across the rodent somatosensory cortex were compared to the cortical laminae as identified by tissue histology and administration of an anatomical tracer to cortex and thalamus. Across the cortical thickness, MEMRI signal intensity was low in layer I, increased in layer II, decreased in layer III until(More)
Information about layer specific connections in the brain comes mainly from classical neuronal tracers that rely on histology. Manganese Enhanced MRI (MEMRI) has mapped connectivity along a number of brain pathways in several animal models. It is not clear at what level of specificity neuronal connectivity measured using MEMRI tracing can resolve. The goal(More)
Peripheral nerve injury causes sensory dysfunctions that are thought to be attributable to changes in neuronal activity occurring in somatosensory cortices both contralateral and ipsilateral to the injury. Recent studies suggest that distorted functional response observed in deprived primary somatosensory cortex (S1) may be the result of an increase in(More)
Evidence is emerging for significant inter-hemispheric cortical plasticity in humans, opening important questions about the significance and mechanism for this long range plasticity. In this work, peripheral nerve deafferentation was performed on both the rat forepaw and hindpaw and cortical reorganization was assessed using functional MRI (fMRI). Sensory(More)
The robustness of plasticity mechanisms during brain development is essential for synaptic formation and has a beneficial outcome after sensory deprivation. However, the role of plasticity in recovery after acute brain injury in children has not been well defined. Traumatic brain injury (TBI) is the leading cause of death and disability among children, and(More)
NAP (davunetide) is a novel neuroprotective compound with mechanism of action that appears to involve microtubule (MT) stabilization and repair. To evaluate, for the first time, the impact of NAP on axonal transport in vivo and to translate it to neuroprotection in a severe neurodegeneration, the SOD1-G93A mouse model for amyotrophic lateral sclerosis (ALS)(More)
PURPOSE To measure intra- and inter-hemispheric connectivity within the basal ganglia (BG) nuclei in healthy and in unilateral 6-hydroxydopamine (6-OHDA) Parkinson disease rat model in order to test the BG interhemispheric connectivity hypothesis. MATERIAL AND METHODS The manganese-enhanced MRI (MEMRI) method with direct injection of manganese chloride(More)
In the weeks following unilateral peripheral nerve injury, the deprived primary somatosensory cortex (SI) responds to stimulation of the ipsilateral intact limb as demonstrated by functional magnetic resonance imaging (fMRI) responses. The neuronal basis of these responses was studied by using high-resolution fMRI, in vivo electrophysiological recordings,(More)
Functional magnetic resonance imaging (fMRI) is used to investigate the basal ganglia (BG)-cortex circuit using a rat model of Parkinson's disease (PD). The model involves a unilateral destruction of the right substantia nigra by intranigral injection of the dopaminergic neurotoxin 6-hydroxydopamine. Volume of cortical activity was measured by the blood(More)