# Galina Cariowa

• Citations Per Year
Abstract: In this work a rationalized algorithm for Dirac numbers multiplication is presented. This algorithm has a low computational complexity feature and is well suited to parallelization of computations. The computation of two Dirac numbers product using the naïve method takes 256 real multiplications and 240 real additions, while the proposed algorithm(More)
In this paper we introduce efficient algorithm for the multiplication of trigintaduonions. The direct multiplication of two trigintaduonions requires 1024 real multiplications and 992 real additions. We show how to compute a trigintaduonion product with 498 real multiplications and 943 real additions. During synthesis of the discussed algorithm we use a(More)
• ArXiv
• 2015
In this work a rationalized algorithm for Dirac numbers multiplication is presented. This algorithm has a low computational complexity feature and is well suited to FPGA implementation. The computation of two Dirac numbers product using the naïve method takes 256 real multiplications and 240 real additions, while the proposed algorithm can compute the same(More)
• ArXiv
• 2015
In this paper we introduce efficient algorithm for the multiplication of split-octonions. The direct multiplication of two split-octonions requires 64 real multiplications and 56 real additions. More effective solutions still do not exist. We show how to compute a product of the split-octonions with 28 real multiplications and 92 real additions. During(More)
• Central European Journal of Computer Science
• 2012
In this paper we introduce efficient algorithm for the multiplication of sedenions. The direct multiplication of two sedenions requires 256 real multiplications and 240 real additions. We show how to compute a sedenions product with 120 real multiplications and 344 real additions.
• ArXiv
• 2015
This paper presents the derivation of a new algorithm for multiplying of two Kaluza numbers. Performing this operation directly requires 1024 real multiplications and 992 real additions. The proposed algorithm can compute the same result with only 512 real multiplications and 576 real additions. The derivation of our algorithm is based on utilizing the fact(More)
• ArXiv
• 2017
In this paper, new schemes for a squarer, multiplier and divider of complex numbers are proposed. Traditional structural solutions for each of these operations require the presence some number of general-purpose binary multipliers. The advantage of our solutions is a removing of multiplications through replacing them by less costly squarers. We use Logan's(More)