Galileo Namata

Learn More
Networks have become ubiquitous. Communication networks, financial transaction networks, networks describing physical systems, and social networks are all becoming increasingly important in our day-to-day life. Often, we are interested in models of how objects in the network influence each other (e.g., who infects whom in an epidemiological network), or we(More)
In recent years, informal, online communication has transformed the ways in which we connect and collaborate with friends and colleagues. With millions of individuals communicating online each day, we have a unique opportunity to observe the formation and evolution of roles and relationships in networked groups and organizations. Yet a number of challenges(More)
This work investigates design choices in modeling a discourse scheme for improving opinion polarity classification. For this, two diverse global inference paradigms are used: a supervised collective classification framework and an unsupervised optimization framework. Both approaches perform substantially better than baseline approaches, establishing the(More)
This work shows how to construct discourse-level opinion graphs to perform a joint interpretation of opinions and discourse relations. Specifically, our opinion graphs enable us to factor in discourse information for polarity classification, and polarity information for discourse-link classification. This inter-dependent framework can be used to augment and(More)
The problems of object classification (labeling the nodes of a graph) and link prediction (predicting the links in a graph) have been largely studied independently. Commonly, object classification is performed assuming a complete set of known links and link prediction is done assuming a fully observed set of node attributes. In most real world domains,(More)
This paper describes a computational approach to resolving the true referent of a named mention of a person in the body of an email. A generative model of mention generation is used to guide mention resolution. Results on three relatively small collections indicate that the accuracy of this approach compares favorably to the best known techniques, and(More)
Online communications provide a rich resource for understanding social networks. Information about the actors, and their dynamic roles and relationships, can be inferred from both the communication content and traffic structure. A key component in the analysis of online communications such as email is the resolution of name references within the body of the(More)
There are a growing number of machine learning algorithms which operate on graphs. Example applications for these algorithms include predicting which customers will recommend products to their friends in a viral marketing campaign using a customer network, predicting the topics of publications in a citation network, or predicting the political affiliations(More)