Learn More
Huntington's disease (HD) is initiated by an abnormally expanded polyglutamine stretch in the huntingtin protein, conferring a novel property on the protein that leads to the loss of striatal neurons. Defects in mitochondrial function have been implicated in the pathogenesis of HD. Here, we have examined the hypothesis that the mutant huntingtin protein may(More)
The in vitro degradation of microtubule-associated protein 2 (MAP-2) and spectrin by the calcium-dependent neutral protease calpain was studied. Five major results are reported. First, MAP-2 isolated from twice-cycled microtubules (2 X MT MAP-2) was extremely sensitive to calpain-induced hydrolysis. Even at an enzyme-to-substrate ratio (wt/wt) of 1:200, 2 X(More)
The polyglutamine-expanded N-terminal region of mutant huntingtin causes neurodegeneration in Huntington's disease (HD). Neuronal intranuclear and cytosolic inclusions composed of mutant huntingtin are found in brains of HD patients. Because tissue transglutaminase cross-links proteins into filamentous aggregates and polypeptide-bound glutamines are primary(More)
Cyclin dependent kinase 5 (Cdk5) is a proline-direct protein kinase that is most active in the CNS, and has been implicated as a contributing factor in certain neurodegenerative diseases. Further, there is evidence to suggest that Cdk5 may facilitate the progression of apoptosis. However, the mechanisms involved have not been elucidated. The tumor(More)
There is significant evidence that energy production impairment and mitochondrial dysfunction play a role in the pathogenesis of Huntington disease. Nonetheless, the specific mitochondrial defects due to the presence of mutant huntingtin have not been fully elucidated. To determine the effects of mutant huntingtin on mitochondrial energy production, a(More)
Paired helical filaments (PHFs) are the major structural elements of Alzheimer's disease neurofibrillary lesions, and these filaments are formed from hyperphosphorylated brain tau known as PHF-tau. Recent studies showed that many previously identified phosphorylated residues in PHF-tau also are phosphate acceptor sites in fetal and rapidly processed adult(More)
Microtubule associated protein 2 (MAP-2) historically has been perceived primarily as a static, structural protein, necessary along with other cytoskeletal proteins to maintain neuroarchitecture but somewhat removed from the "mainstream" of neuronal response mechanisms. Quite to the contrary, MAP-2 is exquisitely sensitive to many inputs and recent(More)
Huntington disease (HD) is caused by a pathological elongation of CAG repeats in the huntingtin protein gene and is characterized by atrophy and neuronal loss primarily in the striatum. Mitochondrial dysfunction and impaired Ca2+ homeostasis in HD have been suggested previously. Here, we elucidate the effects of Ca2+ on mitochondria from the wild type(More)
The modulation of tau phosphorylation in response to insulin was examined in human neuroblastoma SH-SY5Y cells. Insulin treatment resulted in a transient increase in tau phosphorylation followed by a decrease in tau phosphorylation that correlated directly with a sequential activation and deactivation of glycogen synthase kinase-3beta (GSK-3beta). The(More)
Tissue transglutaminase is a normal constituent of the central and peripheral nervous systems and in rats transglutaminase activity in brain and spinal cord is highest during fetal stages when axonal outgrowth is occurring. Further, treatment of human neuroblastoma SH-SY5Y cells with retinoic acid results in the cells withdrawing from the cell cycle and(More)