Learn More
Huntington's disease (HD) is initiated by an abnormally expanded polyglutamine stretch in the huntingtin protein, conferring a novel property on the protein that leads to the loss of striatal neurons. Defects in mitochondrial function have been implicated in the pathogenesis of HD. Here, we have examined the hypothesis that the mutant huntingtin protein may(More)
Site-specific phosphorylation of tau negatively regulates its ability to bind and stabilize microtubule structure. Although tau is a substrate of glycogen synthase kinase 3beta (GSK3beta), the exact sites on tau that are phosphorylated by this kinase in situ have not yet been established, and the effect of these phosphorylation events on tau-microtubule(More)
There is significant evidence that energy production impairment and mitochondrial dysfunction play a role in the pathogenesis of Huntington disease. Nonetheless, the specific mitochondrial defects due to the presence of mutant huntingtin have not been fully elucidated. To determine the effects of mutant huntingtin on mitochondrial energy production, a(More)
The in vitro degradation of microtubule-associated protein 2 (MAP-2) and spectrin by the calcium-dependent neutral protease calpain was studied. Five major results are reported. First, MAP-2 isolated from twice-cycled microtubules (2 X MT MAP-2) was extremely sensitive to calpain-induced hydrolysis. Even at an enzyme-to-substrate ratio (wt/wt) of 1:200, 2 X(More)
The polyglutamine-expanded N-terminal region of mutant huntingtin causes neurodegeneration in Huntington's disease (HD). Neuronal intranuclear and cytosolic inclusions composed of mutant huntingtin are found in brains of HD patients. Because tissue transglutaminase cross-links proteins into filamentous aggregates and polypeptide-bound glutamines are primary(More)
Cyclin dependent kinase 5 (Cdk5) is a proline-direct protein kinase that is most active in the CNS, and has been implicated as a contributing factor in certain neurodegenerative diseases. Further, there is evidence to suggest that Cdk5 may facilitate the progression of apoptosis. However, the mechanisms involved have not been elucidated. The tumor(More)
Extensive striatal neuronal loss occurs in Huntington's disease (HD), which is caused by an expanded polyglutamine tract in huntingtin (htt). Evidence suggests that mutant htt directly or indirectly compromises mitochondrial function, contributing to the neuronal loss. To determine the role of compromised mitochondrial function in the neuronal cell death in(More)
Paired helical filaments (PHFs) are the major structural elements of Alzheimer's disease neurofibrillary lesions, and these filaments are formed from hyperphosphorylated brain tau known as PHF-tau. Recent studies showed that many previously identified phosphorylated residues in PHF-tau also are phosphate acceptor sites in fetal and rapidly processed adult(More)
Tau is a group of neuronal microtubule-associated proteins that are formed by alternative mRNA splicing and accumulate in neurofibrillary tangles in Alzheimer's disease (AD) brain. Tau plays a key role in regulating microtubule dynamics, axonal transport and neurite outgrowth, and all these functions of tau are modulated by site-specific phosphorylation.(More)
Microtubule associated protein 2 (MAP-2) historically has been perceived primarily as a static, structural protein, necessary along with other cytoskeletal proteins to maintain neuroarchitecture but somewhat removed from the "mainstream" of neuronal response mechanisms. Quite to the contrary, MAP-2 is exquisitely sensitive to many inputs and recent(More)