Learn More
The p38 mitogen-activated protein kinase is a stress-activated enzyme responsible for transducing inflammatory signals and initiating apoptosis. In the Alzheimer's disease (AD) brain, increased levels of phosphorylated (active) p38 were detected relative to age-matched normal brain. Intense phospho-p38 immunoreactivity was associated with neuritic plaques,(More)
Mitochondrial impairment has been implicated in the pathogenesis of Huntington’s disease (HD). However, how mutant huntingtin impairs mitochondrial function and thus contributes to HD has not been fully elucidated. In this study, we used striatal cells expressing wild type (STHdhQ7/Q7) or mutant (STHdhQ111/Q111) huntingtin protein, and cortical neurons(More)
It has been almost 25 years since the initial discovery that tau was the primary component of the neurofibrillary tangles (NFTs) in Alzheimer disease (AD) brain. Although AD is defined by both β-amyloid (Aβ) pathology (Aβ plaques) and tau pathology (NFTs), whether or not tau played a critical role in disease pathogenesis was a subject of discussion for many(More)
Tau is a microtubule-associated protein that is functionally modulated by phosphorylation and hyperphosphorylated in several neurodegenerative diseases. Because phosphorylation regulates both normal and pathological tau functioning, it is of great interest to identify the signalling pathways and enzymes capable of modulating tau phosphorylation in vivo. The(More)
One of the major pathological characteristics of Alzheimer's disease is the increased number of amyloid-containing senile plaques within the brain. The dense cores of these plaques are composed primarily of highly insoluble aggregates of a 39-43-residue peptide referred to as the beta-amyloid peptide (beta A). The mechanisms by which these insoluble(More)
Brain inflammation is widely documented to occur in Alzheimer's disease (AD), but its sources are still incompletely understood. Here, we present in vitro and in situ evidence that, like amyloid beta peptide (Abeta), tau, the major protein constituent of the neurofibrillary tangle, is a potent, antibody-independent activator of the classical complement(More)
In the Alzheimer disease brain, the microtubule-associated protein tau is hyperphosphorylated. There is also evidence that apoptotic-like processes may contribute to the neuronal loss in AD. In an apoptotic model that involves replating neuronal PC12 cells without serum and nerve growth factor (NGF), tau was hyperphosphorylated. During replating, however,(More)
One of the defining pathological features of Alzheimer disease (AD) is the intraneuronal accumulation of tau. The tau that forms these accumulations is altered both posttranslationally and conformationally, and there is now significant evidence that soluble forms of these modified tau species are the toxic entities rather than the insoluble neurofibrillary(More)
Three experiments indicate that Pavlovian conditioning to tone alters microtubule-associated protein-2 (MAP-2) in the temporal cortex. First, increased MAP-2 immunohistochemistry was evident in temporal cortex following tone-shock pairings but not light-shock pairings. In the second experiment, animals given tone paired with shock (compared with animals(More)
In Alzheimer's Disease brain, the microtubule-associated protein tau is hyperphosphorylated at specific epitopes and abnormally aggregates into filamentous structures. In addition, there is significant neurodegeneration in Alzheimer's disease brain, and there is data to suggest that apoptotic-like processes may contribute to the neurodegeneration. It has(More)