Gail Letzter

Learn More
Coideal subalgebras of the quantized enveloping algebra are surveyed , with selected proofs included. The first half of the paper studies generators, Harish-Chandra modules, and associated quantum homogeneous spaces. The second half discusses various well known quantum coideal subalgebras and the implications of the abstract theory on these examples. The(More)
As is well known, the Shapovalov bilinear form and its determinant is an important tool in the representation theory of semisimple Lie algebras over char. 0. To our knowledge, the corresponding study of the Shapovalov bilinear form and its determinant is not available in the literature in char. p or the quantum case at roots of unity. The aim of this paper(More)
The theory of quantum symmetric pairs as developed by the second author is based on coideal subalgebras of the quantized universal enveloping algebra for a semisimple Lie algebra. This paper investigates the center of these coideal subalgebras, proving that the center is a polynomial ring. A basis of the center is given in terms of a sub-monoid of the(More)
The theory of quantum symmetric pairs as developed by the second author is based on coideal subalgebras of the quantized universal enveloping algebra for a semisimple Lie algebra. This paper investigates the center of these coideal subalgebras, proving that the center is a polynomial ring. A basis of the center is given in terms of a submonoid of the(More)
Publisher Item Identifier. The Publisher Item Identifier (PII) appears at the top of the first page of each article published in this journal. This alphanumeric string of characters uniquely identifies each article and can be used for future cataloging, searching, and electronic retrieval. Postings to the AMS website. Articles are posted to the AMS website(More)