Learn More
Vessel tree reconstruction in volumetric data is a necessary prerequisite in various medical imaging applications. Specifically, when considering the application of automated lung nodule detection in thoracic computed tomography (CT) scans, vessel trees can be used to resolve local ambiguities based on global considerations and so improve the performance of(More)
Research and development of information access technology for scanned paper documents has been hampered by the lack of public test collections of realistic scope and complexity. As part of a project to create a prototype system for search and mining of masses of document images, we are assembling a 1.5 terabyte dataset to support evaluation of both(More)
Accurate curvature estimation in discrete surfaces is an important problem with numerous applications. Curvature is an indicator of ridges and can be used in applications such as shape analysis and recognition, object segmentation, adaptive smoothing, anisotropic fairing of irregular meshes, and anisotropic texture mapping. In this paper, a new framework is(More)
Offline signature recognition is an important form of biometric identification that can be used for various purposes. Similar to other biometric measures, signatures have inherent variability and so pose a difficult recognition problem. In this paper, we explore a novel approach for reducing the variability associated with matching signatures based on curve(More)
Vessel enhancement in volumetric data is a necessary prerequisite in various medical imaging applications with particular importance for automated nodule detection. Ideally, vessel enhancement filters should enhance vessels and vessel junctions while suppressing nodules and other non-vessel elements. A distinction between vessels and nodules is normally(More)
We present a general framework for vessel segmentation in retinal images with a particular focus on small vessels. The retinal images are first processed by a nonlinear diffusion filter to smooth vessels along their principal direction. The vessels are then enhanced using a compound vessel enhancement filter that combines the eigenvalues of the Hessian(More)
Lesion segmentation in MRI scans is used for lesion quantification as pertaining to various medical conditions. We propose a novel technique for chronic stroke lesion segmentation based on multiple modalities including T1-weighted and T2-weighted images as well as diffusion tensor-based modalities. The proposed approach is based on a mixture-parametric(More)