Learn More
Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, employ a type III secretion system to deliver effector proteins across the bacterial cell. In EPEC, four proteins are known to be exported by a type III secretion system_EspA, EspB and EspD required for subversion of host cell signal transduction pathways and a translocated intimin(More)
Enteropathogenic (EPEC) and enterohaemorrhagic Escherichia coli (EHEC) constitute a significant risk to human health worldwide. Both pathogens colonize the intestinal mucosa and, by subverting intestinal epithelial cell function, produce a characteristic histopathological feature known as the 'attaching and effacing' (A/E) lesion. Although EPEC was the(More)
Citrobacter rodentium is a classically noninvasive pathogen of mice that is similar to enteropathogenic Escherichia coli (EPEC) in man. Following oral infection of young mice, the organism colonizes the distal colon, and within 1 week the colonic mucosa doubles in thickness and there is massive epithelial cell hyperplasia. Since T-cell responses in mouse(More)
Much research into food-borne human pathogens has focused on transmission from foods of animal origin. However, recent investigations have identified fruits and vegetables are the source of many disease outbreaks. Now believed to be a much larger contributor to produce-associated outbreaks than previously reported, norovirus outbreaks are commonly caused by(More)
Subversion of host cell actin microfilaments is the hallmark of enterohaemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli infections. Both pathogens translocate the trans-membrane receptor protein-translocated intimin receptor (Tir), which links the extracellular bacterium to the cell cytoskeleton. While both converge on neural Wiskott-Aldrich(More)
The locus of enterocyte effacement of enteropathogenic Escherichia coli encodes a type III secretion system, an outer membrane protein adhesin (intimin, the product of eae ) and Tir, a translocated protein that becomes a host cell receptor for intimin. Many type III secreted proteins require chaperones, which function to stabilize proteins, prevent(More)
Intimins are outer membrane proteins expressed by enteric bacterial pathogens capable of inducing intestinal attachment-and-effacement lesions. A eukaryotic cell-binding domain is located within a 280-amino-acid (Int280) carboxy terminus of intimin polypeptides. Polyclonal antiserum was raised against Int280 from enteropathogenic Escherichia coli (EPEC)(More)
Many bacterial pathogens utilize a type III secretion system to deliver multiple effector proteins into host cells. Here we found that the type III effectors, NleE from enteropathogenic E. coli (EPEC) and OspZ from Shigella, blocked translocation of the p65 subunit of the transcription factor, NF-kappaB, to the host cell nucleus. NF-kappaB inhibition by(More)
Citrobacter rodentium, an attaching-effacing bacterial pathogen, establishes an acute infection of the murine colonic epithelium and induces a mild colitis in immunocompetent mice. This study describes the role of T-cell subsets and B lymphocytes in immunity to C. rodentium. C57Bl/6 mice orally infected with C. rodentium resolved infection within 3 to 4(More)
Enteropathogenic Escherichia coli (EPEC) was the first pathovar of E. coli to be implicated in human disease; however, no EPEC strain has been fully sequenced until now. Strain E2348/69 (serotype O127:H6 belonging to E. coli phylogroup B2) has been used worldwide as a prototype strain to study EPEC biology, genetics, and virulence. Studies of E2348/69 led(More)