Gabriella Sanniti di Baja

Learn More
The skeleton of a digital figure can often be regarded as a convenient alternative to the figure itself. It is useful both to diminish drastically the amount of data to be handled, and to simplify the computational procedures required for description and classification purposes. Thinning a digital figure down to its skeleton is a time-consuming process when(More)
A distance-driven method to compute the surface and curve skeletons of 3D objects in voxel images is described. The method is based on the use of the <;3,4,5>; weighted distance transform, on the detection of anchor points, and on the application of topology preserving removal operations. The obtained surface and curve skeletons are centered within(More)
A skeletonization algorithm is presented, characterized by two main features: invariance under isometric transformations of the pattern, and recoverability. The algorithm is driven by the Euclidean distance map of the pattern. Invariance under isometric transformations is guaranteed due to the use of the Euclidean distance to compute the distance map;(More)
Skeletonization is a way to reduce dimensionality of digital objects. Here, we present an algorithm that computes the curve skeleton of a surface-like object in a 3D image, i.e., an object that in one of the three dimensions is at most twovoxel thick. A surface-like object consists of surfaces and curves crossing each other. Its curve skeleton is a 1D set(More)