Gabriella Nyitrai

Learn More
Glutamate and γ-aminobutyric acid (GABA) transporters play important roles in balancing excitatory and inhibitory signals in the brain. Increasing evidence suggest that they may act concertedly to regulate extracellular levels of the neurotransmitters. Here we present evidence that glutamate uptake-induced release of GABA from astrocytes has a direct impact(More)
In spite of several studies showing specific physiological functions of changes in the extracellular level of the major excitatory and inhibitory transmitters, Glu and GABA within the brain ([Glu](EXT), [GABA](EXT)) the exact origin (neuronal vs. astroglial, synaptic vs. extrasynaptic) of Glu and GABA present in dialysate samples is still a matter of(More)
ATP and adenosine are well-known neuroactive compounds. Other nucleotides and nucleosides may also be involved in different brain functions. This paper reports on extracellular concentrations of nucleobases and nucleosides (uracil, hypoxanthine, xanthine, uridine, 2'-deoxycytidine, 2'-deoxyuridine, inosine, guanosine, thymidine, adenosine) in response to(More)
BACKGROUND Glutamate (Glu) and gamma-aminobutyric acid (GABA) transporters play important roles in regulating neuronal activity. Glu is removed from the extracellular space dominantly by glial transporters. In contrast, GABA is mainly taken up by neurons. However, the glial GABA transporter subtypes share their localization with the Glu transporters and(More)
We report on cellular actions of the illicit recreational drug gamma-hydroxybutyrate (GHB) in the brain reward area nucleus accumbens. First, we compared the effects of GHB and the GABA(B) receptor agonist baclofen. Neither of them affected the membrane currents of medium spiny neurons in rat nucleus accumbens slices. GABAergic and glutamatergic synaptic(More)
A single low dose of the neurotoxin: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) results paradoxical sleep deprivation and reduction in food intake without any detectable motor deficiencies. In the present study we monitored the in vivo extracellular levels of monoamines and their metabolites following intraperitoneal (i.p.) administration of a(More)
Here we address how dynamics of glutamatergic and GABAergic synaptic input to CA3 pyramidal cells contribute to spontaneous emergence and evolution of recurrent seizure-like events (SLEs) in juvenile (P10-13) rat hippocampal slices bathed in low-[Mg(2+)] artificial cerebrospinal fluid. In field potential recordings from the CA3 pyramidal layer, a short(More)
We have evaluated the effect of the brain penetrating GABAb antagonist, CGP 36742 on GABAb receptors using in vivo microdialysis in the ventrobasal thalamus of freely moving rat. When a solution of 1 mM CGP 36742 in ACSF was dialyzed into the ventrobasal thalamus, 2-3-fold increases of extracellular Glu, Asp and Gly running parallel with significant(More)
The effect of intrathalamic application of GABA(B) receptor antagonists on the basal excitatory amino-acid levels was studied using microdialysis probes implanted in the dorsal lateral geniculate nucleus and in the ventrobasal complex. In both nuclei, continuous perfusion of the GABA(B) receptor antagonist 3-aminopropyl-(diethoxymethyl)-phosphinic acid (CGP(More)
To specify targets for an ischemic preconditioning paradigm (ischemic tolerance), c-fos expressions in ischemic (induced by 10 min bilateral carotid-occlusions subsequent to coagulation of vertebral arteries) and preconditioned rats (treated for 4 min carotid-occlusions 72 h before ischemia) were compared in 12 forebrain areas/nuclei. Fos immunostaining was(More)