Gabriella Eula

Learn More
It has been demonstrated that automated locomotor training can improve walking capabilities in spinal cord-injured subjects but its effectiveness on brain damaged patients has not been well established. A possible explanation of the discordant results on the efficacy of robotic training in patients with cerebral lesions could be that these patients, besides(More)
Motor rehabilitation techniques based on passive movement of the lower limbs have been developed over the past 15 years. Gait training automation is the latest innovation in these techniques. This paper describes the design and development of a pneumatic interactive gait rehabilitation orthosis (PIGRO), as well as the first experimental results obtained(More)
Pneumatic artificial muscles are pneumatic devices with practical and various applications as common actuators. They, as human muscles, work in agonistic-antagonistic way, giving a traction force only when supplied by compressed air. The state of the art of soft pneumatic actuators is here analyzed: different models of pneumatic muscles are considered and(More)
Two mechatronics prototypes, useful for robotic neurotreatments and new clinical trainings, are here presented. P.I.G.R.O. (pneumatic interactive gait rehabilitation orthosis) is an active exoskeleton with an electropneumatic control. It imposes movements on lower limbs in order to produce in the patient's brain proper motor cortex activation. Bra.Di.P.O.(More)
Functional magnetic resonance imaging analysis has made major strides in recent years, both because of the development of new scanners and owing to magnetic resonance compatible systems that make it possible to stimulate parts of the human body during analysis. The significant gains in our knowledge of the brain that can thus be achieved justify efforts to(More)
  • 1