Gabriella Biasiol

Learn More
The NS2-NS3 region of the hepatitis C virus polyprotein encodes a proteolytic activity that is required for processing of the NS2/3 junction. Membrane association of NS2 and the autocatalytic nature of the NS2/3 processing event have so far constituted hurdles to the detailed investigation of this reaction. We now report the first biochemical(More)
The nonstructural protein NS3 of the hepatitis C virus (HCV) harbors a serine protease domain that is responsible for most of the processing events of the nonstructural region of the polyprotein. Its inhibition is presently regarded as a promising strategy for coping with the disease caused by HCV. In this work, we show that the NS3 protease undergoes(More)
The replication of the hepatitis C virus (HCV), an important human pathogen, crucially depends on the proteolytic maturation of a large viral polyprotein precursor. The viral nonstructural protein 3 (NS3) harbors a serine protease domain that plays a pivotal role in this process, being responsible for four out of the five cleavage events that occur in the(More)
The protease domain of the hepatitis C virus (HCV) protein NS3 was expressed in Escherichia coli, purified to homogeneity, and shown to be active on peptides derived from the sequence of the NS4A-NS4B junction. Experiments were carried out to optimize protease activity. Buffer requirements included the presence of detergent, glycerol, and dithiothreitol, pH(More)
The NS3 protein of the hepatitis C virus contains a serine protease that, upon binding to its cofactor, NS4A, is responsible for maturational cleavages that occur in the nonstructural region of the viral polyprotein. We have studied in vitro complex formation between the NS3 protease domain expressed in Escherichia coli and a synthetic peptide spanning the(More)
The HCV genome encodes, within the NS3 gene, a serine protease whose activity specifically cleaves the viral polyprotein precursor. Proteolytic processing of HCV polyprotein precursor by the viral NS3 proteinase is essential for virion maturation and designing specific inhibitors of this protease as possible anti-viral agents is a desirable and practical(More)
A binding assay suitable for the identification of active site-directed inhibitors of the hepatitis C virus serine protease NS3 was developed. A C-terminal extension of 13 residues that is specifically recognized by the Escherichia coli biotin holoenzyme synthetase (Bir A) was fused to a truncated NS3 protease domain, allowing the efficient production of in(More)
Given the extent of hepatitis C virus (HCV) infection as a worldwide health problem and the lack of effective treatment, the development of anti-HCV drugs is an important and pressing objective. Previous studies have indicated that proteolytic events mediated by the NS3 protease of HCV are fundamental to the generation of an active viral replication(More)
Conformational changes occurring within the NS3 protease domain from the hepatitis C virus Bk strain (NS3(1-180)) under different physico-chemical conditions either in the absence or in the presence of its cofactor Pep4A were investigated by limited proteolysis experiments. Because the surface accessibility of the protein is affected by conformational(More)
The hepatitis C virus (HCV) serine protease is necessary for viral replication and represents a valid target for developing new therapies for HCV infection. Potent and selective inhibitors of this enzyme have been identified and shown to inhibit HCV replication in tissue culture. The optimization of these inhibitors for clinical development would greatly(More)