Learn More
Cerebellar deficit contributes significantly to disability in multiple sclerosis (MS). Several clinical and experimental studies have investigated the pathophysiology of cerebellar dysfunction in this neuroinflammatory disorder, but the cellular and molecular mechanisms are still unclear. In experimental autoimmune encephalomyelitis (EAE), a mouse model of(More)
Glutamate-mediated excitotoxicity is supposed to induce neurodegeneration in multiple sclerosis (MS). Glatiramer acetate (GA) is an immunomodulatory agent used in MS treatment with potential neuroprotective action. Aim of the present study was to investigate whether GA has effects on glutamate transmission alterations occurring in experimental autoimmune(More)
Multiple sclerosis (MS) is characterized by auto-reactive T cells that respond to central nervous system (CNS)-based antigens and affect motor, sensory as well as behavioral and cognitive functions. Cognitive deficits are now considered an early manifestation of the disease in MS patients. However, the pathophysiology responsible for the cognitive symptoms(More)
Synaptic dysfunction triggers neuronal damage in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). While excessive glutamate signaling has been reported in the striatum of EAE, it is still uncertain whether GABA synapses are altered. Electrophysiological recordings showed a reduction of spontaneous GABAergic synaptic(More)
Understanding the modulation of the neural circuitry of fear is clearly one of the most important aims in neurobiology. Protein phosphorylation in response to external stimuli is considered a major mechanism underlying dynamic changes in neural circuitry. TrkB (Ntrk2) neurotrophin receptor tyrosine kinase potently modulates synaptic plasticity and activates(More)
BACKGROUND AND PURPOSE Glutamate transmission is dysregulated in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), the animal model of MS. A characteristic of EAE is increased glutamate transmission associated with up-regulation of AMPA receptors. However, little is known about the role of NMDA receptors in the synaptic(More)
A significant proportion of multiple sclerosis (MS) patients have functionally relevant cerebellar deficits, which significantly contribute to disability. Although clinical and experimental studies have been conducted to understand the pathophysiology of cerebellar dysfunction in MS, no electrophysiological and morphological studies have investigated(More)
Transient receptor potential vanilloid 1 (TRPV1) channels are involved in several inflammatory diseases. However, their action is still controversial, and both pro-inflammatory and anti-inflammatory roles have been described. We used a strain of TRPV1-KO mice to characterize the role of these channels in experimental autoimmune encephalomyelitis (EAE),(More)
  • 1