Gabriele Jedlitschky

Learn More
The multidrug resistance-associated protein (MRP) is the product of an ATP-binding cassette transporter gene overexpressed in some tumor cells resistant to antineoplastic agents. We studied the transport function of MRP in membrane vesicles prepared from HeLa cells transfected with an MRP expression vector and overexpressing this 190-kDa membrane(More)
The liver is the major source of reduced glutathione (GSH) in blood plasma. The transport protein mediating the efflux of GSH across the basolateral membrane of human hepatocytes has not been identified so far. In this study we have localized the multidrug resistance protein 4 (MRP4; ABCC4) to the basolateral membrane of human, rat, and mouse hepatocytes(More)
The ATP-dependent transport of the endogenous glutathione conjugate leukotriene C4 (LTC4) was more than 25-fold higher in membrane vesicles prepared from human leukemia cells (HL60/ADR) overexpressing the multidrug resistance-associated protein than from drug-sensitive parental HL60 cells or revertant cells. Similar results were obtained with(More)
Multidrug resistance proteins (MRPs, symbol ABCC) are membrane glycoproteins that mediate the ATP-dependent export of organic anions, including cytotoxic and antiviral drugs, from cells. To identify MRP family members possibly involved in the intrinsic resistance of human brain to cytotoxic and antiviral drugs, we analyzed the expression and localization of(More)
Cellular export of cyclic nucleotides has been observed in various tissues and may represent an elimination pathway for these signaling molecules, in addition to degradation by phosphodiesterases. In the present study we provide evidence that this export is mediated by the multidrug resistance protein isoform MRP5 (gene symbol ABCC5). The transport function(More)
Previous studies have identified the ATP-dependent export of glutathione conjugates as a physiological function of the multidrug resistance protein (MRP). The involvement of MRP in the transport of endogenous and xenobiotic conjugates was investigated further using membrane vesicles from MRP-transfected HeLa cells. The ATP-dependent transport of the(More)
The blood–brain barrier (BBB) plays a fundamental role in the integrity of brain homeostasis. Acute disruption and also even slight shifting of equilibrium of structural elements or transport processes might lead to substantial consequences, resulting in neurological disorders (1). There is a fundamental need for the development and improvement of in vitro(More)
BACKGROUND The cardiac effects of statins are subject to controversial discussion, and the mechanism of their uptake into the human heart is unknown. A candidate protein is the organic anion transporting polypeptide (OATP) 2B1 (SLCO2B1), because related transporters are involved in the uptake of statins into the human liver. In this study we examine OATP2B1(More)
Xenobiotic metabolizing enzymes in the olfactory epithelium have been suggested to catalyse inactivation and facilitate elimination of odorants. We report here the molecular cloning and functional characterization of a human olfactory UDP-glucuronosyltransferase (UGT). The cloned protein is composed of 527 amino acids with an identity of 87% with a rat(More)
We have previously shown that the multidrug resistance protein (MRP) mediates the ATP-dependent membrane transport of the endogenous glutathione conjugate leukotriene C4 (LTC4) and of structurally related anionic conjugates of lipophilic compounds [Jedlitschky, Leier, Buchholz, Center and Keppler (1994) Cancer Res. 54, 4833-4836; Leier, Jedlitschky,(More)