Gabriele Grenningloh

Learn More
fasiclin II (fas II), a member of the immunoglobulin superfamily, was previously characterized and cloned in grasshopper. To analyze the function of this molecule, we cloned the Drosophila fas II homolog and generated mutants in the gene. In both grasshopper and Drosophila, fasciclin II is expressed on the MP1 fascicle and a subset of other axon pathways.(More)
The glycine receptor of rat spinal cord is an oligomeric membrane glycoprotein of molecular mass 250,000 daltons that contains three polypeptides of 48,000, 58,000, and 93,000 daltons. Monoclonal antibodies (mAbs) were prepared against the affinity-purified glycine receptor protein by using 125I-labeled receptor preparations for the detection of positive(More)
The Drosophila neural cell adhesion molecule Fasciclin II (Fas II) is expressed dynamically on a subset of embryonic CNS axons, many of which selectively fasciculate in the vMP2, MP1, and FN3 pathways. Here we show complementary fasII loss-of-function and gain-of-function phenotypes. Loss-of-function fasII mutations lead to the complete or partial(More)
A 93 kd polypeptide associated with the mammalian inhibitory glycine receptor (GlyR) is localized at central synapses and binds with high affinity to polymerized tubulin. This protein, named gephyrin (from the Greek gamma epsilon phi upsilon rho alpha, bridge), is thought to anchor the GlyR to subsynaptic microtubules. Here we report its primary structure(More)
The inhibitory glycine receptor (GlyR) in mammalian spinal cord displays pharmacological and molecular heterogeneity of its strychnine binding alpha subunit. Here, cDNAs were isolated which encode a variant (alpha ins 1) of the rat GlyR alpha 1 subunit that contains eight additional amino acids in its putative cytoplasmic domain. Analysis of the(More)
Axonal elongation and the transformation of growth cones to synaptic terminals are major steps of brain development and the molecular mechanisms involved form the basis of the correct wiring of the nervous system. The same mechanisms may also contribute to the remodelling of nerve terminals that occurs in the adult brain, as a morphological substrate to(More)
The inhibitory glycine receptor (GlyR) is a ligand-gated chloride channel protein that occurs in developmentally regulated isoforms in the vertebrate central nervous system. Monoclonal antibodies (mAbs) against the GlyR distinguish neonatal and adult GlyR proteins by identifying distinct alpha subunit variants within these receptor isoforms. Here,(More)
We have cloned and sequenced cDNAs of the strychnine-binding subunit of the rat glycine receptor, a neurotransmitter-gated chloride channel protein of the CNS. The deduced polypeptide shows significant structural and amino-acid sequence homology with nicotinic acetylcholine receptor proteins, indicating that there is a family of genes encoding(More)
We have compared SCG10 and CAP-23 expression with that of GAP-43 during axonal regeneration in the peripheral and central nervous systems (PNS, CNS) of adult rats. SCG10, CAP-23, and GAP-43 mRNAs were strongly upregulated by motor and dorsal root ganglion (DRG) neurons following sciatic nerve crush, but not after dorsal rhizotomy. When the sciatic nerve was(More)