Gabriele Frediani

Learn More
Within the emerging field of polymer-based mechatronics, soft materials showing intrinsic electromechanical transduction properties are being largely studied to develop new types of actuators. Among them, so-called dielectric elastomer (DE) actuators are one of the most promising. This paper presents a new class of such devices, which uses an incompressible(More)
Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls(More)
Patients affected by motor disorders of the hand and having residual voluntary movements of fingers or wrist can benefit from self-rehabilitation exercises performed with so-called dynamic hand splints. These systems consist of orthoses equipped with elastic cords or springs, which either provide a sustained stretch or resist voluntary movements of fingers(More)
This paper presents a novel approach used to develop haptic displays of motility of organs and compliance of tissues, aimed at combining structural simplicity with realistic appearance and consistence. The dielectric elastomer actuation technology was used to mimic mechanical passive properties and electromechanical active functions of tissues by means of(More)
Dielectric elastomer actuators (DEAs) have been demonstrated to represent today a high-performance technology for electroactive polymer mechatronics. As a means to improve versatility and safety of DEAs, so-called “hydrostatically coupled” DEAs (HC-DEAs) have recently been shown to offer new opportunities. HC-DEAs are based on an(More)
The family of ElectroActive Polymers for electromechanical transduction, better referred to as Electromechanically Active Polymers (EAPs), groups `smart' materials that exhibit a mechanical response to an electrical stimulus, while offering, at the same time, light weight, mechanical compliance, compact size, simple structure, low power consumption,(More)
The use of virtual images, computer generated objects and 3D models is becoming increasingly relevant in a number of fields such as simulators for training of medical operator [1], teleoperation [2], computer aided design and 3D modelling [3]. For instance, virtual reality can help training surgeons, reducing the need for learning and practicing entirely(More)
Electrical control of optical focalisation is important in several fields, such as consumer electronics, medical diagnostics and optical communications. As an alternative to complex, bulky and expensive current solutions based on shifting constant-focus lenses, here we report on an electrically tunable lens made of dielectric elastomers as ‘artificial(More)
The so-called hydrostatically coupled dielectric elastomer actuators (HC-DEAs) have recently been described as a means to improve versatility and safety of electroactive polymer actuators made of DEs. HC-DEAs use an incompressible fluid that mechanically couples a DE-based active part to a passive part interfaced to the load. In this paper, we present the(More)
This study describes an actuated bioreactor which mimics the pulsatile contractile motion of the intestinal barrier using electro-responsive elastomers as smart materials that undergo deformation upon electrical stimulation. The device consists of an annular dielectric elastomer actuator working as a radial artificial muscle able to rhythmically contract(More)