Gabriele Fischer von Mollard

Learn More
Sets of SNARE proteins mediate membrane fusion by assembling into core complexes. Multiple SNAREs are thought to function in different intracellular trafficking steps but it is often unclear which of the SNAREs cooperate in individual fusion reactions. We report that syntaxin 7, syntaxin 8, vti1b and endobrevin/VAMP-8 form a complex that functions in the(More)
Vacuole SNAREs, including the t-SNAREs Vam3p and Vam7p and the v-SNARE Nyv1p, are found in a multisubunit "cis" complex on isolated organelles. We now identify the v-SNAREs Vti1p and Ykt6p by mass spectrometry as additional components of the immunoisolated vacuolar SNARE complex. Immunodepletion of detergent extracts with anti-Vti1p removes all the Ykt6p(More)
Membrane traffic in eukaryotic cells relies on recognition between v-SNAREs on transport vesicles and t-SNAREs on target membranes. Here we report the identification of AtVTI1a and AtVTI1b, two Arabidopsis homologues of the yeast v-SNARE Vti1p, which is required for multiple transport steps in yeast. AtVTI1a and AtVTI1b share 60% amino acid identity with(More)
Specific soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) proteins are required for different membrane transport steps. The SNARE Vti1a has been colocalized with Golgi markers and Vti1b with Golgi and the trans-Golgi network or endosomal markers in fibroblast cell lines. Here we study the distribution of Vti1a and Vti1b(More)
Two mammalian proteins, vtila and vtilb, are homologous to the yeast Q-SNARE Vtilp which is part of several SNARE complexes in different transport steps. In vitro experiments suggest distinct functions for vtila and vtilb. Here we compared the subcellular localization of endogenous vtila and vtilb by immunofluorescence and immuno-electron microscopy. Both(More)
SNARE proteins on transport vesicles and target membranes have important roles in vesicle targeting and fusion. Therefore, localization and activity of SNAREs have to be tightly controlled. Regulatory proteins bind to N-terminal domains of some SNAREs. vti1b is a mammalian SNARE that functions in late endosomal fusion. To investigate the role of the N(More)
EpsinR is a clathrin-coated vesicle (CCV)-associated protein that binds to vti1b, suggesting that it may be a vti1b-selective adaptor. Depletion of epsinR to undetectable levels in HeLa cells using siRNA causes vti1b to redistribute from the perinuclear region to the cell periphery, but vti1a also redistributes in epsinR-depleted cells, and both vti(More)
ENTH and ANTH domain proteins are involved in budding of clathrin-coated vesicles. SNAREs are fusogenic proteins that function in the targeting and fusion of transport vesicles. In mammalian and yeast cells, ENTH domain proteins (epsinR and Ent3p) interact with SNAREs of the vti1 family (Vti1b or Vti1p). This interaction indicates that ENTH proteins could(More)
SNARE proteins are required for fusion of transport vesicles with target membranes. Previously, we found that the yeast Q-SNARE Vti1p is involved in transport to the cis-Golgi, to the prevacuole/late endosome, and to the vacuole. Here we identified a previously uncharacterized gene, VTS1, and the R-SNARE YKT6 both as multicopy and as low copy suppressors of(More)
Regulated secretion from pancreatic acinar cells occurs by exocytosis of zymogen granules (ZG) at the apical plasmalemma. ZGs originate from the TGN and undergo prolonged maturation and condensation. After exocytosis, the zymogen granule membrane (ZGM) is retrieved from the plasma membrane and ultimately reaches the TGN. In this study, we analyzed the fate(More)