Gabriele Alexe

Learn More
The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number.(More)
Phylogenetic trees based on mtDNA polymorphisms are often used to infer the history of recent human migrations. However, there is no consensus on which method to use. Most methods make strong assumptions which may bias the choice of polymorphisms and result in computational complexity which limits the analysis to a few samples/polymorphisms. For example,(More)
We develop a new technique to analyse microarray data which uses a combination of principal components analysis and consensus ensemble k-clustering to find robust clusters and gene markers in the data. We apply our method to a public microarray breast cancer dataset which has expression levels of genes in normal samples as well as in three pathological(More)
Molecular stratification of disease based on expression levels of sets of genes can help guide therapeutic decisions if such classifications can be shown to be stable against variations in sample source and data perturbation. Classifications inferred from one set of samples in one lab should be able to consistently stratify a different set of samples in(More)
  • 1