Gabriela v. Blankenfeld

Learn More
The electrical properties of oligodendrocytes during their development in cell culture were analyzed by combining two techniques: cell identification with cell-type and stage-specific antibodies and the patch-clamp technique. The transition from the bipotential precursor cell, which can still develop into astrocytes and oligodendrocytes, into an(More)
Glial cells of the central nervous system express receptors for the main inhibitory and excitatory neurotransmitters, GABA and glutamate. The glial GABA and glutamate receptors share many properties with the neuronal GABAA and kainate/quisqualate receptors, but are molecularly and, in some aspects, pharmacologically distinct from their neuronal(More)
Gastropancreatic neuroendocrine cells synthesize large amounts of γ-aminobutyric acid (GABA). This amino acid neurotransmitter appears to be stored in and released from, vesicles similar to small synaptic vesicles. So far, the function of GABA in gastropancreatic, neuroendocrine cells has not been clarified. Previous work suggested that only pancreatic,(More)
The electrophysiological properties of the two major glial cell types in cultures from the regenerating goldfish optic nerve/tract were studied with patch-clamp techniques. Spindle-shaped cells express myelin proteins. These oligodendrocyte-like cells possess outwardly rectifying currents, do not show glutamate activated currents and are rarely electrically(More)
Functional characterization of membrane channels by patch clamp techniques has revealed great diversity of transmitter or Voltage gated channels in native membranes. Concomitantly recombinant DNA techniques revealed a plethora of genes encoding channel subunits. Thus functional diversity within a particular class of channels may be generated by families of(More)
  • 1