Learn More
Although the existence of mammary stem cells has been suggested by serial transplantation studies in mice, their identification has been hindered by the lack of specific surface markers, and by the absence of suitable in vitro assays for testing stem cell properties: self-renewal and ability to generate differentiated progeny. We have developed an in vitro(More)
The epithelial components of the mammary gland are thought to arise from stem cells with a capacity for self-renewal and multilineage differentiation. Furthermore, these cells and/or their immediate progeny may be targets for transformation. We have used both in vitro cultivation and a xenograft mouse model to examine the role of hedgehog signaling and(More)
Although the concept that cancers originate from stem cells (SC) is becoming scientifically accepted, mechanisms by which SC contribute to tumor initiation and progression are largely unknown. For colorectal cancer (CRC), investigation of this problem has been hindered by a paucity of specific markers for identification and isolation of SC from normal and(More)
Tumors may be initiated and maintained by a cellular subcomponent that displays stem cell properties. We have used the expression of aldehyde dehydrogenase as assessed by the ALDEFLUOR assay to isolate and characterize cancer stem cell (CSC) populations in 33 cell lines derived from normal and malignant mammary tissue. Twenty-three of the 33 cell lines(More)
We have used in vitro and mouse xenograft models to examine the interaction between breast cancer stem cells (CSC) and bone marrow-derived mesenchymal stem cells (MSC). We show that both of these cell populations are organized in a cellular hierarchy in which primitive aldehyde dehydrogenase expressing mesenchymal cells regulate breast CSCs through cytokine(More)
The cancer stem cell hypothesis asserts that malignancies arise in tissue stem and/or progenitor cells through the dysregulation or acquisition of self-renewal. In order to determine whether the dietary polyphenols, curcumin, and piperine are able to modulate the self-renewal of normal and malignant breast stem cells, we examined the effects of these(More)
PURPOSE Tamoxifen (Tam) is the most prescribed hormonal agent for treatment of estrogen receptor α (ERα)-positive breast cancer patients. Using microarray analysis, we observed that metastatic breast tumors resistant to Tam therapy had elevated levels of Dicer. EXPERIMENTAL DESIGN We overexpressed Dicer in ERα-positive MCF-7 human breast cancer cells and(More)
INTRODUCTION Notch signaling has been implicated in the regulation of cell-fate decisions such as self-renewal of adult stem cells and differentiation of progenitor cells along a particular lineage. Moreover, depending on the cellular and developmental context, the Notch pathway acts as a regulator of cell survival and cell proliferation. Abnormal(More)
The main focus of this review is the role of mammary stem cells in normal breast development and carcinogenesis. We have developed a new in vitro culture system that permits, for the first time, the propagation of mammary stem and progenitor cells in an undifferentiated state, which should facilitate the elucidation of pathways that regulate normal mammary(More)
The mammary gland epithelial components are thought to arise from stem cells that undergo both self-renewal and differentiation. Self-renewal has been shown to be regulated by the Hedgehog, Notch, and Wnt pathways and the transcription factor B lymphoma Mo-MLV insertion region 1 (Bmi-1). We review data about the existence of stem cells in the mammary gland(More)