Gabriel Staffelbach

Learn More
Recent advances in computer science and highly parallel algorithms make Large Eddy Simulation (LES) an efficient tool for the study of complex flows. The available resources allow today to tackle full complex geometries that can not be installed in laboratory facilities. The present paper demonstrates that the state of the art in LES and computer science(More)
Turbulence is a recurrent and recognised challenge for which the scientific community has not been able to provide reliable methodologies necessary for predictions in complex industrial applications. In fact and throughout the past century, that challenge has been identified as a million dollar achievement simply because of the tremendous impact such a(More)
Large Eddy Simulations (LES) of a full annular helicopter gas turbine combustor have been performed. Emphasis is placed on the azimuthal mode that often appears in real configurations. The current LES are shown to capture these self-excited modes, with limited impact of the grid resolution. The structure of the azimuthal mode is discussed and shown to be(More)
This report presents a joint experimental and numerical study of the non-reacting flow in a swirler where small geometrical variations are imposed on a row of holes. Simulation results are compared to experimental data in terms of mean and Root Mean Square (RMS) velocity fields as well as in terms of unsteady activity (e.g. hydrodynamic modes such as the(More)
Combustion is the source of eighty percent of the energy produced in the world: it is therefore a topic of major interest in the present context of global warming and decreasing fuel resources. Simulating combustors and especially instability mechanisms in these systems has become a central issue in the combustion community in the last ten years. This can(More)
  • 1