Gabriel P. Howles

Learn More
The use of contrast agents for neuroimaging is limited by the blood-brain barrier (BBB), which restricts entry into the brain. To administer imaging agents to the brain of rats, intracarotid infusions of hypertonic mannitol have been used to open the BBB. However, this technically challenging approach is invasive, opens only a limited region of the BBB, and(More)
High-resolution magnetic resonance angiography is already a useful tool for studying mouse models of human disease. Magnetic resonance angiography in the mouse is typically performed using time-of-flight contrast. In this work, a new long-circulating blood-pool contrast agent-a liposomal nanoparticle with surface-conjugated gadolinium (SC-Gd liposomes)-was(More)
Though mice are the dominant model system for studying the genetic and molecular underpinnings of neuroscience, functional neuroimaging in mice remains technically challenging. One approach, Activation-Induced Manganese-enhanced MRI (AIM MRI), has been used successfully to map neuronal activity in rodents. In AIM MRI, manganese(2+) acts a calcium analog and(More)
Although mice are the dominant model system for studying the genetic and molecular underpinnings of neuroscience, functional neuroimaging in mice remains technically challenging. One approach, Activation-Induced Manganese-enhanced MRI (AIM MRI), has been used successfully to map neuronal activity in rodents. In AIM MRI, Mn(2+) acts a calcium analog and(More)
  • 1