Gabriel Maltais-Landry

Learn More
Nitrogen (N) processing in constructed wetlands (CWs) is often variable, and the contribution to N loss and retention by various pathways (nitrification/denitrification, plant uptake and sediment storage) remains unclear. We studied the seasonal variation of the effects of artificial aeration and three different macrophyte species (Phragmites australis,(More)
Greenhouse gas (GHG) emissions by constructed wetlands (CWs) could mitigate the environmental benefits of nutrient removal in these man-made ecosystems. We studied the effect of 3 different macrophyte species and artificial aeration on the rates of nitrous oxide (N(2)O), carbon dioxide (CO(2)) and methane (CH(4)) production in CW mesocosms over three(More)
Plants affect phosphorus (P) cycling through uptake and the mobilization of P from several soil pools into soil solution. The effects of seven cover crop species – three legumes (variable morphology), three cereals (variable domestication degree), one mustard (non-mycorrhizal) – on P cycling were compared in a greenhouse experiment. Monocultures and(More)
The effect of organic loading, season and plant species on the treatment of fish farm effluent was tested using three-year old mesocosm wetland systems. During one year, nine 1 m2 mesocosms (horizontal subsurface flow), located in a controlled greenhouse environment, were fed with a reconstituted fish farm effluent containing a high fraction of soluble(More)
Submerged aquatic vegetation (SAV) may serve as an integrative proxy of spatial and temporal nitrogen (N) availability in aquatic ecosystems as plants are physiologically capable of storing variable amounts of N. However, it is important to understand whether plant species behave similarly or differently within and among systems. We sampled different SAV(More)
The effects of design and operational factors on the dynamics of ciliated protozoa in constructed wetlands (CWs) treating wastewater remain poorly known, although bacterivory by ciliates could have important implications for nutrient cycling in these systems. We conducted a greenhouse experiment with eight wetland mesocosms (1 m(2)) fed with synthetic(More)
Cover crops provide benefits in agricultural systems with high P availability (i.e., optimal or excessive soil P for plant growth) by reducing losses of soil phosphorus (P) via erosion and leaching, and potentially by increasing soil P availability when P is released during residue decomposition. We quantified P transfer from cover crop residues to soil(More)
  • 1