Gabriel M. de Oliveira

Learn More
Fas/Fas ligand (Fas-L) engagement, a potent inducer of apoptosis, is also important for cellular activation, regulation of effector and chemotactic activity, and secretion of chemokines and cytokines. We evaluated the relevance of Fas/Fas-L in the regulation of myocarditis induced by Trypanosoma cruzi infection and observed that in Fas-L(-/-) mice(More)
A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4(+) and CD8(+) T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous(More)
Experimental acute infection with Trypanosoma cruzi in mice promotes an intense myocarditis and other systemic changes. However, the network of pathophysiological disorders and renal injury caused by the infection has not been elucidated. Our previous results with a murine model observed a discrete acute myocarditis and high mortality with significant(More)
Chagasic patients with cardiomyopathy have low levels of selenium (Se), a fundamental trace element. We evaluated the effect of supplementing infected mice with Se (0.25-16 ppm). Supplementation with 0.25 or 1 ppm Se led to parasitaemia and survival curves similar to those of the control group. Mice treated with 4-16 ppm showed a dose-dependent decrease of(More)
BACKGROUND Chagas disease induced by Trypanosoma cruzi (T. cruzi) infection is a major cause of mortality and morbidity affecting the cardiovascular system for which presently available therapies are largely inadequate. Transforming Growth Factor beta (TGFß) has been involved in several regulatory steps of T. cruzi invasion and in host tissue fibrosis.(More)
Chagas' disease induced by Trypanosoma cruzi infection is an important cause of mortality and morbidity affecting the cardiovascular system for which presently available therapies are largely inadequate. We previously reported that transforming growth factor beta (TGF-beta) is implicated in several regulatory aspects of T. cruzi invasion and growth and in(More)
Immunisation with Amastigote Surface Protein 2 (asp-2) and trans-sialidase (ts) genes induces protective immunity in highly susceptible A/Sn mice, against infection with parasites of the Y strain of Trypanosoma cruzi. Based on immunological and biological strain variations in T. cruzi parasites, our goal was to validate our vaccination results using(More)
Chagas' disease, a neglected tropical illness for which current therapy is unsatisfactory, is caused by the intracellular parasite Trypanosoma cruzi. The goal of this work is to investigate the in vitro and in vivo effects of the arylimidamide (AIA) DB766 against T. cruzi. This arylimidamide exhibits strong trypanocidal activity and excellent selectivity(More)
Understanding the dual participation of the immune response in controlling the invader and at the same time causing tissue damage might contribute to the design of effective new vaccines and therapies for Chagas disease. Perforin, a cytolytic protein product of killer cells, is involved in resistance to acute Trypanosoma cruzi infection. However, the(More)
Chagas disease caused by Trypanosoma cruzi is an important cause of mortality and morbidity in Latin America but no vaccines or safe chemotherapeutic agents are available. Combined therapy is envisioned as an ideal approach since it may enhance efficacy by acting upon different cellular targets, may reduce toxicity and minimize the risk of drug resistance.(More)