Gabriel L. Converse

Learn More
Polyetheretherketone (PEEK) was reinforced with 0-50 vol% hydroxyapatite (HA) whiskers using a novel powder processing and compression molding technique which enabled uniform mixing at high whisker content. Texture analysis showed that viscous flow during compression molding produced a preferred orientation of whiskers along the specimen tensile axis.(More)
The apparent mechanical properties of hydroxyapatite (HA) whisker reinforced polyetherketoneketone (PEKK) scaffolds were evaluated in unconfined, uniaxial compression to investigate the effects of the porosity (75%, 82.5% and 90%), HA content (0, 20 and 40 vol%) and mold temperature (350, 365 and 375 ( composite function)C). Increased porosity resulted in a(More)
Cartilage matrix is a promising material for cartilage regeneration given the evidence supporting its chondroinductive character. The "raw materials" of cartilage matrix can serve as building blocks and signals for tissue regeneration. These matrices can be created by chemical or physical processing: physical methods disrupt cellular membranes and nuclei(More)
Extracellular matrix (ECM)-based materials are attractive for regenerative medicine in their ability to potentially aid in stem cell recruitment, infiltration, and differentiation without added biological factors. In musculoskeletal tissue engineering, demineralized bone matrix is widely used, but recently cartilage matrix has been attracting attention as a(More)
Polyetheretherketone (PEEK) was reinforced with 0-40 vol% hydroxyapatite (HA) whiskers using a novel powder processing and compression molding technique. A powder mixture was uniaxially pressed into a composite powder compact and compression molded into a flat composite bar using an open-channel die, such that the HA whiskers exhibited a preferred(More)
Hydroxyapatite (HA) whiskers have been synthesized using a number of chemical solution methods, including the chelate decomposition method. Numerous previous studies have investigated the effects of the reagents, reagent concentrations, solution pH, and reaction temperature on HA whisker morphology and composition. However, purely kinetic effects, such as(More)
Hydroxyapatite (HA) whisker-reinforced polyetherketoneketone (PEKK) bone ingrowth scaffolds were prepared and characterized. High levels of porosity (75-90%) and HA whisker reinforcement (0-40 vol.%) were attained using a powder processing approach to mix the HA whiskers, PEKK powder and a NaCl porogen, followed by compression molding at 350-375 degrees(More)
The objective of this study was to examine the effects of the hydroxyapatite (HA) reinforcement morphology and content on the fatigue behavior of HA reinforced high density polyethylene (HDPE). To this end, HDPE was reinforced with 20 and 40 vol% of either HA whiskers or an equiaxed HA powder, and tested in four-point bending fatigue under simulated(More)
Decellularized allografts offer potential as heart valve substitutes and scaffolds for cell seeding. The effects of decellularization on the quasi-static and time-dependent mechanical behavior of the pulmonary valve leaflet under biaxial loading conditions have not previously been reported in the literature. In the current study, the stress-strain,(More)
In the development of tissue-engineered heart valves based on allograft decellularized extracellular matrix scaffolds, the material properties of the implant should be ideally comparable to the native semilunar valves. This investigation of the viscoelastic properties of the three functional aortic/pulmonary valve tissues (leaflets, sinus wall, and great(More)