Learn More
In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification from Minchenko and Stakhovski that was called RCR. We show that RCPLD is enough to ensure the convergence of an(More)
We present two new constraint qualifications (CQ) that are weaker than the recently introduced Relaxed Constant Positive Linear Dependence (RCPLD) constraint qualification. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact(More)
Sequential optimality conditions have recently played an important role on the analysis of the global convergence of optimization algorithms towards first-order stationary points, justifying their stopping criteria. In this paper we introduce a sequential optimality condition that takes into account second-order information and that allows us to improve the(More)
In this work we present new weak conditions that ensure the validity of necessary second order optimality conditions (SOC) for nonlinear optimization. We are able to prove that weak and strong SOCs hold for all Lagrange multipliers using Abadie-type assumptions. We also prove weak and strong SOCs for at least one Lagrange multiplier imposing the(More)
In this paper we deal with optimality conditions that can be verified by a nonlinear optimization algorithm , where only a single Lagrange multiplier is avaliable. In particular, we deal with a conjecture formulated in [R. On second-order optimality conditions for nonlinear programming " , Optimization, 56:529–542, 2007], which states that whenever a local(More)
In this paper we investigate how to efficiently apply Approximate-Karush-Kuhn-Tucker (AKKT) proximity measures as stopping criteria for optimization algorithms that do not generate approximations to Lagrange multipliers, in particular, Genetic Algorithms. We prove that for a wide range of constrained optimization problems the KKT error measurement tends to(More)