Learn More
The goals of this study were to determine the time course and spatial dependence of structural diameter changes in the mouse gracilis artery after a redistribution of blood flow and to compare the observations with predictions of computational models for structural adaptation. Diameters were measured 1, 2, 7, 14, 21, 28, and 56 days after resection of one(More)
OBJECTIVE We have previously demonstrated the ability to construct 3-dimensional microvascular beds in vitro via angiogenesis from isolated, intact, microvessel fragments that retain endothelial cells and perivascular cells. Our objective was to develop and characterize an experimental model of tissue vascularization, based on the implantation of this(More)
INTRODUCTION Numerous anti-angiogenic agents are currently developed to limit tumor growth and metastasis. While these drugs offer hope for cancer patients, their transient effect on tumor vasculature is difficult to assess in clinical settings. Confocal laser endomicroscopy (CLE) is a novel endoscopic imaging technology that enables histological(More)
The tumor microcirculation is characterized by an abnormal vascular network with dilated, tortuous and saccular vessels. Therefore, imaging the tumor vasculature and determining its morphometric characteristics represent a critical goal for optimizing the cancer treatment that targets the blood vessels (i.e. antiangiogenesis therapy). The aim of this study(More)
Arteriolar arcades provide alternate pathways for blood flow after obstruction of arteries or arterioles such as occurs in stroke and coronary and peripheral vascular disease. When obstruction is prolonged, remaining vessels adjust their diameters chronically in response to altered hemodynamic and metabolic conditions. Here, the effectiveness of arcades in(More)
The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the(More)
OBJECTIVE Vascular networks respond to chronic alterations in blood supply by structural remodeling. Previously, we showed that blood flow changes in the mouse GA lead to transient diameter increases, which can generate large increases in circumferential wall stress. Here, we examine the associated changes in the medial area of the arterial wall and the(More)
During the typical healing response to an implanted biomaterial, vascular-rich granulation tissue forms around the implant and later resolves into a relatively avascular, fibrous capsule. We have previously shown that a microvascular construct (MVC) consisting of isolated microvessel fragments suspended in a collagen I gel forms a persistent(More)
The arterial vascular network of the porcine triceps brachii muscle (TBM) (an extensor muscle to the forearm) was studied and compared to another extensor muscle (the soleus muscle) of small rodents. The left axillary arteries (LAA) of nine Yucatan miniature swine were perfused with latex material to reveal the organization of the arterial blood supply to(More)
Primary lung cancer is an increasing health issue worldwide, with an ever-growing incidence due to various risk factors dispersed in all settings of modern society. Late discovery and poor survival rates for patients that do not qualify for surgical treatments greatly decrease overall mortality. Imaging methods remain powerful tools for early detection;(More)