Gabriel Eades

Learn More
Evidence supports a critical role for microRNAs (miRNAs) in regulation of tissue-specific differentiation and development. Signifying a disruption of these programs, expression profiling has revealed extensive miRNA dysregulation in tumors compared with healthy tissue. The miR-200 family has been established as a key regulator of epithelial phenotype and,(More)
The major goal of breast cancer prevention is to reduce the incidence of ductal carcinoma in situ (DCIS), an early stage of breast cancer. However, the biology behind DCIS formation is not well understood. It is suspected that cancer stem cells (CSCs) are already programmed in pre-malignant DCIS lesions and that these tumor-initiating cells may determine(More)
NF-E2-related factor 2 (Nrf2) is an important transcription factor that activates the expression of cellular detoxifying enzymes. Nrf2 expression is largely regulated through the association of Nrf2 with Kelch-like ECH-associated protein 1 (Keap1), which results in cytoplasmic Nrf2 degradation. Conversely, little is known concerning the regulation of Keap1(More)
NF-E2-related factor 2 (Nrf2) is an important transcription factor involved in antioxidant response. Nrf2 binds antioxidant response elements (ARE) within promoters of genes encoding detoxification enzymes (e.g., NAD (P) H-quinone oxidoreductase 1 (NQO1)) leading to their transcriptional activation. Nrf2 function is regulated post-translationally by its(More)
UNLABELLED Triple-negative (ER(-), HER2(-), PR(-)) breast cancer (TNBC) is an aggressive disease with a poor prognosis with no available molecularly targeted therapy. Silencing of microRNA-145 (miR-145) may be a defining marker of TNBC based on molecular profiling and deep sequencing. Therefore, the molecular mechanism behind miR-145 downregulation in TNBC(More)
The tumor microenvironment plays a critical role in regulating breast tumor progression. Signaling between preadipocytes and breast cancer cells has been found to promote breast tumor formation and metastasis. Exosomes secreted from preadipocytes are important components of the cancer stem cell niche. Mouse preadipocytes (3T3L1) are treated with the natural(More)
Several reports have indicated that miR-140, a possible tumor suppressor microRNA (miR), is down-regulated in breast tumors compared with normal breast tissues. However, the role of miR-140 in breast tumorigenesis is unclear. We initiated studies that examined estrogen receptor α (ERα) signaling in the tissue-specific regulation of miR-140 in breast cancer.(More)
An increasing body of evidence supports a stepwise model for progression of breast cancer from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC). Due to the high level of DCIS heterogeneity, we cannot currently predict which patients are at highest risk for disease recurrence or progression. The mechanisms of progression are still largely(More)
Previously, we found that basal-like ductal carcinoma in situ (DCIS) contains cancer stem-like cells. Here, we characterize stem-like subpopulations in a model of basal-like DCIS and identify subpopulations of CD49f+/CD24- stem-like cells that possess aldehyde dehydrogenase 1 activity. We found that these cells show enhanced migration potential compared(More)
Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment, have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin(More)