Gabriel E. Büchel

Learn More
Indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (1, KP1019) and its analogue sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (2, KP1339) are promising redox-active anticancer drug candidates that were investigated with X-ray absorption near edge structure spectroscopy. The analysis was based on the concept of the coordination charge(More)
By exploring the Anderson type rearrangement reactions, osmium(IV) complexes of the general formula [cation](+)[Os(IV)Cl(5)(Hazole)](-), where [cation](+) = n-Bu(4)N(+), Hazole = 1H-pyrazole (Hpz) (1), 1H-indazole (Hind) (2), 1H-imidazole (Him) (3), 1H-benzimidazole (Hbzim) (4), 1H,2,4-triazole (Htrz) (5), have been synthesized. To improve water solubility(More)
A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d-4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ-ox)(NO)}4], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental(More)
Synthesis and X-ray diffraction structures of cis and trans isomers of ruthenium and osmium metal complexes of general formulas (nBu4N)[cis-MCl4(NO)(Hind)], where M = Ru (1) and Os (3), and (nBu4N)[trans-MCl4(NO)(Hind)], where M = Ru (2) and Os (4) and Hind = 1H-indazole are reported. Interconversion between cis and trans isomers at high temperatures(More)
A one-electron reduction of osmium(IV) complexes trans-[Os(IV)Cl4(Hazole)2], where Hazole = 1H-pyrazole ([1](0)), 2H-indazole ([2](0)), 1H-imidazole ([3](0)), and 1H-benzimidazole ([4](0)), afforded a series of eight new complexes as osmium analogues of KP1019, a lead anticancer drug in clinical trials, with the general formula(More)
By controlled Anderson type rearrangement reactions complexes of the general formula trans-[Os(IV)Cl(4)(Hazole)(2)], where Hazole = 1H-pyrazole, 2H-indazole, 1H-imidazole, and 1H-benzimidazole, have been synthesized. Note that 2H-indazole tautomer stabilization in trans-[Os(IV)Cl(4)(2H-indazole)(2)] is unprecedented in coordination chemistry of indazole.(More)
Since the discovery that nitric oxide (NO) is a physiologically relevant molecule, there has been great interest in the use of metal nitrosyl compounds as antitumor pharmaceuticals. Particularly interesting are those complexes which can deliver NO to biological targets. Ruthenium- and osmium-based compounds offer lower toxicity compared to other metals and(More)
A one-pot synthesis of osmium(IV) complexes with two different tautomers of indazole, 1H-indazole and 2H-indazole, namely (H(2)ind)[Os(IV)Cl(5)(2H-ind)] (1) and (H(2)ind)[Os(IV)Cl(5)(1H-ind)] (2) is reported. Both compounds have been comprehensively characterized by NMR spectroscopy, ESI (electrospray ionization) mass spectrometry, electronic absorption(More)
  • 1