Learn More
The prevalence and impact of the overexpression of AmpC and efflux pumps were evaluated with a collection of 190 Pseudomonas aeruginosa isolates recovered from bloodstream infections in a 2008 multicenter study (10 hospitals) in Spain. The MICs of a panel of 13 antipseudomonal agents were determined by microdilution, and the expressions of ampC, mexB, mexY,(More)
A limited number of Pseudomonas aeruginosa genotypes (mainly ST-111, ST-175, and ST-235), known as high-risk clones, are responsible for epidemics of nosocomial infections by multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains worldwide. We explored the potential biological parameters that may explain the success of these clones. A total(More)
BACKGROUND The type III secretion system (TTSS) is a major virulence determinant of Pseudomonas aeruginosa. The objective of this study was to determine whether the TTSS genotype is a useful prognostic marker of P. aeruginosa bacteremia mortality. We also studied the potential association between TTSS genotypes and multidrug-resistant (MDR) profiles, and(More)
We investigated the presence of OprD mutations in 60 strains of metallo-ß-lactamase-negative Pseudomonas aeruginosa intermediately susceptible (IS [n = 12]; MIC = 8 μg/ml) or susceptible (S [n = 48]; MICs ≤ 1 to 4 μg/ml) to imipenem and/or meropenem that were isolated from patients with bacteremia in order to evaluate their impact on carbapenem(More)
During the COMParative Activity of Carbapenems Testing (COMPACT) surveillance study, 448 Pseudomonas aeruginosa clinical isolates were obtained from 16 Spanish hospitals. Nonsusceptibility (EUCAST breakpoints) to imipenem (35%), meropenem (33%), and/or doripenem (33%) was observed with 175 isolates (39%). Simultaneous resistance to these three drugs was(More)
We investigated the mechanisms leading to Pseudomonas aeruginosa pan-β-lactam resistance (PBLR) development during the treatment of nosocomial infections, with a particular focus on the modification of penicillin-binding protein (PBP) profiles and imipenem, ceftazidime, and ceftolozane (former CXA-101) PBP binding affinities. For this purpose, six clonally(More)
OBJECTIVES To investigate the mechanisms of carbapenem resistance in the 175 Pseudomonas aeruginosa isolates (39%; 175/448) showing non-susceptibility (European Committee on Antimicrobial Susceptibility Testing breakpoints) to imipenem (35%), meropenem (33%) and/or doripenem (33%) recovered in 2008-09 from 16 Spanish hospitals during the Comparative(More)
Recent reports have revealed the existence of widespread extensively drug-resistant (XDR) P. aeruginosa high-risk clones in health care settings, but there is still scarce information on their specific chromosomal (mutational) and acquired resistance mechanisms. Up to 20 (10.5%) of 190 bloodstream isolates collected from 10 Spanish hospitals met the XDR(More)
Constitutive AmpC hyperproduction is the most frequent mechanism of resistance to the weak AmpC inducers antipseudomonal penicillins and cephalosporins. Previously, we demonstrated that inhibition of the β-N-acetylglucosaminidase NagZ prevents and reverts this mechanism of resistance, which is caused by ampD and/or dacB (PBP4) mutations in Pseudomonas(More)
AmpC hyperproduction is the most frequent mechanism of resistance to penicillins and cephalosporins in Pseudomonas aeruginosa and is driven by ampD mutations or the recently described inactivation of dacB, which encodes the nonessential penicillin-binding protein (PBP) PBP 4. Recent work showed that nagZ inactivation attenuates beta-lactam resistance in(More)