Gabriel Blouin-Demers

Learn More
Dispersal is a fundamental attribute of species in nature and shapes population dynamics, evolutionary trajectories and genetic variation across spatial and temporal scales. It is increasingly clear that landscape features have large impacts on dispersal patterns. Thus, understanding how individuals and species move through landscapes is essential for(More)
Anthropogenic noise can mask animal signals that are crucial for communicating information about food, predators and mating opportunities. In response to noise masking, signallers can potentially improve acoustic signal transmission by adjusting the timing, frequency or amplitude of their signals. These changes can be a short-term modification in response(More)
1. It is widely accepted that reptiles are able to regulate behaviourally their body temperature (T(b)), but this generalization is primarily based on studies of lizards and snakes in the temperate zone. Because the precision of T(b) regulation may vary considerably between taxa and over geographical ranges, studies of semi-terrestrial turtles in climatic(More)
Behavioral thermoregulation is expected to be critical in determining the capacity of reptiles to respond to climate warming and how that response will vary with latitude. We used radio-telemetry to compare behavioral thermoregulation among ratsnake (Elaphe obsoleta) populations in Texas, Illinois, and Ontario, a latitudinal distance of 41500 km. Despite(More)
The ecology of ectotherms should be particularly affected by latitude because so much of their biology is temperature dependent. Current latitudinal patterns should also be informative about how ectotherms will have to modify their behavior in response to climate change. We used data from a total of 175 adult black ratsnakes (Elaphe obsoleta) radio-tracked(More)
The thermoregulatory strategy of reptiles should be optimal if ecological costs (predation risk and time devoted to thermoregulation) are minimized while physiological benefits (performance efficiency and energy gain) are maximized. However, depending on the exact shape of the cost and benefit curves, different thermoregulatory optima may exist, even(More)
The ideal free distribution concept predicts that organisms will distribute themselves between habitats in a density-dependent manner so that individuals, on average, achieve the same fitness in each habitat. In ectotherms, environmental temperature has a strong impact on fitness, but temperature is not depletable and thus not density dependent. Can(More)
Invasive species alter ecosystem structure and function when they establish in new habitats. Although preventing or managing invasions is extremely important for maintaining biodiversity, doing so is difficult and requires efficient intervention. Remote monitoring of free-living animals with electronic tags (i.e. tags that transmit data remotely or log them(More)
Whole-organism performance depends on body temperature and ectotherms have variable body temperatures. The thermal coadaptation hypothesis posits that thermal reaction norms have coevolved with thermal preference such that organisms attain optimal performance under a narrow range of body temperatures commonly experienced in the wild. Since thermal reaction(More)
Sexual size dimorphism (SSD) is a common phenomenon in animals. In many species females are substantially larger than males. Because body size plays a central role in modulating the body temperature (T b) of ectotherms, intersexual differences in body size may lead to important intersexual differences in thermoregulation. In addition, because SSD is(More)