Learn More
We give a ncw method for direct reconstruction of threc-dimcnsional objects from a fcw electron micrographs taken at angles which nced not exceed a range of 60 degrees. Thc method works for totally asymmctric objects, and rcquircs littlc computer timc or storage. It is also applicable to X-ray photography. and may greatly reduce the exposurc compared to(More)
Algebraic reconstruction techniques (ART) are iterative procedures for solving systems of linear equations. They have been used in tomography to recover objects from their projections. In this work we apply an ART approach in which the basis functions used to describe the objects are not based on voxels, but are much smoother functions named "blobs". The(More)
A prospective sample of 69 healthy adults, age range 18-80 years, was studied with magnetic resonance imaging scans (T2 weighted, 5 mm thick) of the entire cranium. Volumes were obtained by a segmentation algorithm that uses proton density and T2 pixel values to correct field inhomogeneities ("shading"). Average (+/- SD) brain volume, excluding cerebellum,(More)
Although three-dimensional electron microscopy (3D-EM) permits structural characterization of macromolecular assemblies in distinct functional states, the inability to classify projections from structurally heterogeneous samples has severely limited its application. We present a maximum likelihood-based classification method that does not depend on prior(More)
In many three-dimensional imaging applications the three-dimensional scene is represented by a three-dimensional array of volume elements, or voxels for short. A subset Q of the voxels is specified by some property. The objects in the scene are then defined as subsets of Q formed by voxels which are “connected” in some appropriate sense. It is(More)
Algebraic reconstruction techniques (ART) are iterative procedures for recovering objects from their projections. It is claimed that by a careful adjustment of the order in which the collected data are accessed during the reconstruction procedure and of the so-called relaxation parameters that are to be chosen in an algebraic reconstruction technique, ART(More)
A maximum-likelihood approach to multi-reference image refinement is presented. In contrast to conventional cross-correlation refinement, the new approach includes a formal description of the noise, implying that it is especially suited to cases with low signal-to-noise ratios. Application of this approach to a cryo-electron microscopy dataset revealed two(More)