Learn More
A maximum-likelihood approach to multi-reference image refinement is presented. In contrast to conventional cross-correlation refinement, the new approach includes a formal description of the noise, implying that it is especially suited to cases with low signal-to-noise ratios. Application of this approach to a cryo-electron microscopy dataset revealed two(More)
Algebraic reconstruction techniques (ART) are iterative procedures for recovering objects from their projections. It is claimed that by a careful adjustment of the order in which the collected data are accessed during the reconstruction procedure and of the so-called relaxation parameters that are to be chosen in an algebraic reconstruction technique, ART(More)
In many three-dimensional imaging applications the three-dimensional scene is represented by a three-dimensional array of volume elements, or voxels for short. A subset Q of the voxels is specified by some property. The objects in the scene are then defined as subsets of Q formed by voxels which are “connected” in some appropriate sense. It is(More)
The effectiveness of projection methods for solving systems of linear inequalities is investigated. It is shown that they have a computational advantage over some alternatives and that this makes them successful in real-world applications. This is supported by experimental evidence provided in this paper on problems of various sizes (up to tens of thousands(More)