Learn More
We investigate experimentally resonant radiation processes driven by slow solitons in a dispersion-engineered photonic crystal waveguide in a regime virtually free of dissipative nonlinear processes (two-photon absorption and Raman scattering). Strong (30% energy conversion) Cherenkov-like radiation accompanied by the blue self-frequency shift of the(More)
We describe nonlinear properties of a GaInP photonic crystal Fabry-Perot resonator containing integrated reflectors. The device exhibits an extremely large static nonlinearity due to a thermal effect. Dynamical measurements were used to discriminate between the thermal and Kerr contributions to the nonlinearity. The high frequency nonlinear response is(More)
We demonstrate dispersion tailoring by coupling the even and the odd modes in a line-defect photonic crystal waveguide. Coupling is determined ab-initio using group theory analysis, rather than by trial-error optimisation of the design parameters. A family of dispersion curves is generated by controlling a single geometrical parameter. This concept is(More)
Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous(More)
We investigate four-wave mixing (FWM) in GaInP 1.5 mm long dispersion engineered photonic crystal waveguides. We demonstrate an 11 nm FWM bandwidth in the CW mode and a conversion efficiency of -24 dB in the quasi-CW mode. For picosecond pump and probe pulses, we report a 3 dB parametric gain and nearly a -5 dB conversion efficiency at watt-level peak pump(More)
An external cavity using a binary phase grating has been developed to achieve coherent combining of five quantum-cascade lasers emitting at 4.65 μm. The grating phase profile is designed to combine five beams of equal intensities into a single beam with a good efficiency (~75%). The performances of this cavity concerning output power, stability, combining(More)
Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal's survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada(More)
We report on a chip scale parametric amplifier based on a GaInP photonic crystal waveguide. The amplifier operates with both pump and signal in the 1550 nm wavelength range and offers an on-chip gain of 11 dB (5 dB including the 6 dB coupling losses) when pumped at only 800 mW. It enables us, therefore, to incorporate the many advantages of parametric(More)
Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to(More)
We describe time domain characterizations of dynamic four-wave mixing in a low loss modified W1 GaInP photonic crystal waveguide. Using 32 ps wide pump pulses with peak powers of up to 1.1 W we achieved a very large conversion efficiency of -6.8 dB as well as a 1.3 dB parametric gain experienced by a weak CW probe signal. Time domain simulations confirm(More)
  • 1