Gaël Cristofari

Learn More
Recruitment to telomeres is a pivotal step in the function and regulation of human telomerase; however, the molecular basis for recruitment is not known. Here, we have directly investigated the process of telomerase recruitment via fluorescence in situ hybridization (FISH) and chromatin immunoprecipitation (ChIP). We find that depletion of two components of(More)
Stabilization of telomere length in germline and highly proliferative human cells is required for long-term survival and for the immortal phenotype of cancer-derived cells. This is achieved through expression of telomerase reverse transcriptase (TERT), which synthesizes telomeric repeats through reverse transcription of its tightly associated RNA template(More)
The reverse transcription process for retroviruses and retrotransposons takes place in a nucleocore structure in the virus or virus-like particle. In retroviruses the major protein of the nucleocore is the nucleocapsid protein (NC protein), which derives from the C-terminal region of GAG. Retroviral NC proteins are formed of either one or two CCHC zinc(More)
Telomerase is required for telomere maintenance and is responsible for the immortal phenotype of cancer cells. How telomerase is assembled and reaches telomeres in the context of nuclear architecture is not understood. Recently, the telomerase RNA subunit (hTR) was shown to accumulate in Cajal bodies (CBs), subnuclear structures implicated in(More)
Telomerase contains a large RNA subunit, TER, and a protein catalytic subunit, TERT. Whether telomerase functions as a monomer or dimer has been a matter of debate. Here we report biochemical and labeling data that show that in vivo-assembled human telomerase contains two TERT subunits and binds two telomeric DNA substrates. Notably, catalytic activity(More)
LTR-retrotransposons are abundant components of all eukaryotic genomes and appear to be key players in their evolution. They share with retroviruses a reverse transcription step during their replication cycle. To better understand the replication of retrotransposons as well as their similarities to and differences from retroviruses, we set up an in vitro(More)
The hepatitis C virus (HCV) is an important human pathogen causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped virus with a positive-sense, single-stranded RNA genome encoding a single polyprotein that is processed to generate viral proteins. Several hundred molecules of the structural Core protein are thought to(More)
RNA chaperones are ubiquitous and abundant proteins found in all living organisms and viruses, where they interact with various classes of RNA. These highly diverse families of nucleic acid-binding proteins possess activities enabling rapid and faithful RNA-RNA annealing, strand transfer, and exchange and RNA ribozyme-mediated cleavage under physiological(More)
We designed a method termed Telospot to discover and characterize telomerase modulators as anticancer drugs or chemical biology tools. Telospot is based on a highly efficient human telomerase expression system and the detection of telomerase DNA reaction products in macroarray format. Telospot offers a highly scalable, cost- and time-effective alternative(More)
Retrotransposons account for almost half of our genome. They are mobile genetics elements-also known as jumping genes--but only the L1HS subfamily of Long Interspersed Nuclear Elements (LINEs) has retained the ability to jump autonomously in modern humans. Their mobilization in germline--but also some somatic tissues--contributes to human genetic diversity(More)