Gaël Barthet

Learn More
The 5-hydroxytryptamine type 4 receptor (5-HT4R) is involved in learning, feeding, respiratory control and gastrointestinal transit. This receptor is one of the G-protein-coupled receptors for which alternative mRNA splicing generates the most variants that differ in their C-terminal extremities. Some 5-HT4R variants (a, e and f) express canonical PDZ(More)
The discovery that class C G protein-coupled receptors (GPCRs) function as obligatory dimeric entities has generated major interest in GPCR oligomerization. Oligomerization now appears to be a common feature among all GPCR classes. However, the functional significance of this process remains unclear because, in vitro, some monomeric GPCRs, such as rhodopsin(More)
G protein-coupled receptors (GPCRs) have been found to trigger G protein-independent signalling. However, the regulation of G protein-independent pathways, especially their desensitization, is poorly characterized. Here, we show that the G protein-independent 5-HT(4) receptor (5-HT(4)R)-operated Src/ERK (extracellular signal-regulated kinase) pathway, but(More)
The 5-hydroxytryptamine(4) (5-HT(4)) receptors have recently emerged as key modulators of learning, memory, and cognitive processes. In neurons, 5-hydroxytryptamine(4) receptors (5-HT(4)Rs) activate cAMP production and protein kinase A (PKA); however, nothing is known about their ability to activate another key signaling pathway involved in learning and(More)
The 5-hydroxytryptamine type 4 receptors (5-HT4Rs) are involved in memory, cognition, feeding, respiratory control, and gastrointestinal motility through activation of a G(s)/cAMP pathway. We have shown that 5-HT4R undergoes rapid and profound homologous uncoupling in neurons. However, no significant uncoupling was observed in COS-7 or HEK293 cells, which(More)
The mouse 5-hydroxytryptamine4a (5-HT4a) receptor is an unusual member of the G protein-coupled receptor superfamily because it possesses two separate carboxyl-terminal palmitoylation sites, which may allow the receptor to adopt different conformations in an agonist-dependent manner (J Biol Chem 277:2534-2546, 2002). By targeted mutation of the proximal(More)
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by early cognitive deficits linked to synaptic dysfunction and loss. Considerable evidence suggests that neuroinflammation contributes to AD. Prostaglandin E2 (PGE2), a key neuroinflammatory molecule, modulates hippocampal synaptic transmission and plasticity. We investigated(More)
*Institut de Génomique Fonctionnelle, Montpellier F-34094, France; †Centre National de la Recherche Scientifique Unité Mixte de Recherche 5203, Montpellier F-34094, France; ‡Institut National de la Santé et de la Recherche Médicale, U661, Montpellier F-34094, France; §Université Montpellier I, Montpellier F-34094, France; Université Montpellier II,(More)
  • 1