Gaétan Guillemette

Learn More
The inositol 1,4,5-trisphosphate receptor (InsP3R) is a ligand-gated Ca2+ channel responsible for the release of Ca2+ from intracellular stores in the response of a wide variety of cells to external stimuli. Molecular cloning studies have revealed the existence of three types of InsP3R encoded by distinct genes. In the study presented here, we used(More)
Angiotensin II (Ang II) is an important regulator of aldosterone production by bovine adrenal glomerulosa cells. On these cells Ang II interacts with the AT1 receptor that is coupled to a G protein controlling the activity of phospholipase C. A primary culture of bovine adrenal glomerulosa cells was used to study the internalization-recycling mechanism of(More)
The selective agonist [Sar9,Met(O2)11]-SP was radioiodinated with 125I-Bolton Hunter in order to study its binding to rat brain membranes and for further comparison with 125I-BH.SP. Specific binding of 125I-BH[Sar9,Met(O2)11]-SP was temperature-dependent, saturable and reversible. In brain homogenates, 125I-BH[Sar9,Met(O2)11]-SP interacted with a single(More)
The inositol 1,4,5-trisphosphate (InsP(3)) receptor is a ligand-gated Ca(2+) channel playing an important role in the control of intracellular Ca(2+). In the study presented here, we demonstrate that angiotensin (AngII), phorbol ester (PMA), and FK506 significantly increase the level of InsP(3) receptor phosphorylation in intact bovine adrenal glomerulosa(More)
[3H][Sar9,Met(O2)11]substance P (SP) with high specific activity (32 Ci/mmol) was used to study neurokinin-1 (NK-1) binding sites on rat brain and smooth muscle membranes of the guinea pig ileum. The specific binding of [3H][Sar9,Met(O2)11]SP was shown to be saturable, reversible and increased in parallel with the protein concentration. Scatchard analyses(More)
The urotensin II receptor (UT) is a member of the G protein-coupled receptor (GPCR) family and binds the cyclic undecapeptide urotensin II (U-II) as well as the octapeptide urotensin II-related peptide (URP). The active UT mediates pleiotropic effects through various signal transduction pathways, including coupling to G proteins and activating the(More)
Intracellular Ca(2+) levels are tightly regulated in the neuronal system. The loss of Ca(2+) homeostasis is associated with many neurological diseases and neuropsychiatric disorders such as Parkinson's, Alzheimer's, and schizophrenia. We investigated the mechanisms involved in intracellular Ca(2+) signaling in PC-12 cells. The stimulation of(More)
BACKGROUND/AIMS The Alzheimer drug memantine (1-amino-3,5-dimethyl-adamantane) blocks the pore channel of the NMDA receptor. Since memantine also blocks the 5-HT(3) receptor, neuronal nicotinic receptor, and voltage-activated Na(+) channels, the purpose of our study was to verify whether memantine could influence other types of channels involved in the(More)
Inositol 1,4,5-trisphosphate (InsP3) is an intracellular messenger generated upon stimulation of a wide variety of cells by Ca2(+)-mobilizing stimuli. Specific binding sites for InsP3 have been identified in the adrenal cortex and many other tissues. The purpose of the present study was to solubilize and further characterize InsP3 receptors of bovine(More)
Angiotensin IV (Ang IV), the 3-8 fragment of angiotensin II, binds to a specific receptor (AT(4)) that has recently been identified as the transmembrane aminopeptidase insulin-regulated aminopeptidase (IRAP) based on the fact that the two proteins share several pharmacological and biochemical properties. Our binding studies indicated that bovine heart(More)