Author pages are created from data sourced from our academic publisher partnerships and public sources.
- Publications
- Influence
Generalizing the finite element method: Diffuse approximation and diffuse elements
- B. Nayroles, G. Touzot, P. Villon
- Mathematics
- 1 September 1992
This paper describes the new “diffuse approximation” method, which may be presented as a generalization of the widely used “finite element approximation” method. It removes some of the limitations of… Expand
The Finite Element Method Displayed
Simplifies the teaching of the finite element method. Topics covered include: the approximation of continuous functions over sub-domains in terms of nodal values; interpolation functions for… Expand
GENERALIZING THE FEM: DIFFUSE APPROXIMATION AND DIFFUSE ELEMENTS
- B. Nayroles, G. Touzot, P. Villon
- Mathematics
- 1992
- 76
- 4
L'approximation diffuse
- B. Nayroles, G. Touzot, P. Villon
- Mathematics
- 1991
On etudie la technique dite d'«approximation diffuse» sur laquelle est fondee la nouvelle «methode des elements diffuse» exposee dans une Note jumelle [1] a lire de preference avant celle-ci. On… Expand
- 43
- 2
Double grid diffuse collocation method
- P. Breitkopf, G. Touzot, P. Villon
- Mathematics
- 23 March 2000
Abstract In the present paper we propose a new method for constructing a second order Moving Least Squares (MLS) approximation. The method leads to shape functions which are then used for solving… Expand
Explicit form and efficient computation of MLS shape functions and their derivatives
- P. Breitkopf, A. Rassineux, G. Touzot, P. Villon
- Mathematics
- 30 May 2000
This work presents a general and efficient way of computing both diffuse and full derivatives of shape functions for meshless methods based on moving least-squares approximation (MLS) and… Expand
LA METHODE DES ELEMENTS DIFFUS
- B. Nayroles, G. Touzot, P. Villon
- Physics
- 1991
L'approximation diffuse est une nouvelle methode de reconstruction approchee d'un champ echantillonne: elle fournit une approximation reguliere de celui-ci et de ses gradients d'ordre arbitrairement… Expand
- 33
- 1
Continuous Stress Fields in Finite Element Analysis
- G. Loubignac, G. Cantin, G. Touzot
- Mathematics
- 1 November 1977
Intégration numérique de lois de comportement élastoplastique
- G. Touzot, Jaouad Dabounou
- Mathematics
- 1993
ABSTRACT This paper presents some new integration algorithms for integration of elastoplastic constitutive laws. These algorithms are designed for use infinite element codes. In all methods presented… Expand