Learn More
Expanded, non-coding RNAs can exhibit a deleterious gain-of-function causing human disease through abnormal interactions with RNA-binding proteins. Myotonic dystrophy (DM), the prototypical example of an RNA-dominant disorder, is mediated by trinucleotide repeat-containing transcripts that deregulate alternative splicing. Spliceopathy has therefore been a(More)
Myotonic dystrophy type 1 is a complex multisystemic inherited disorder, which displays multiple debilitating neurological manifestations. Despite recent progress in the understanding of the molecular pathogenesis of myotonic dystrophy type 1 in skeletal muscle and heart, the pathways affected in the central nervous system are largely unknown. To address(More)
Mutant ribonucleic acid (RNA) molecules can be toxic to the cell, causing human disease through trans-acting dominant mechanisms. RNA toxicity was first described in myotonic dystrophy type 1, a multisystemic disorder caused by the abnormal expansion of a non-coding trinucleotide repeat sequence. The development of multiple and complementary animal models(More)
The zinc finger protein EVI1 is causally associated with acute myeloid leukemogenesis, and inhibition of its function with a small molecule therapeutic may provide effective therapy for EVI1-expressing leukemias. In this paper we describe the development of a pyrrole-imidazole polyamide to specifically block EVI1 binding to DNA. We first identify essential(More)
We present a new, rapid method for producing blood platelets in vitro from cultured megakaryocytes based on a microfluidic device. This device consists in a wide array of VWF-coated micropillars. Such pillars act as anchors on megakaryocytes, allowing them to remain trapped in the device and subjected to hydrodynamic shear. The combined effect of anchoring(More)
During spring and summer in areas which attract tourists, deposits of algae with tides on recreational beaches have to be managed on a daily basis. The access to spatial information on the algae is critical for management including gathering, namely: where, what kind, how much, which physiological state, where do they come from, location of stocks in the(More)
Myotonic dystrophy CTG expansion affects synaptic vesicle proteins, neurotransmission and mouse behaviour Oscar Hernández-Hernández,* Céline Guiraud-Dogan, Géraldine Sicot, Aline Huguet, Sabrina Luilier, Esther Steidl, Stefanie Saenger, Elodie Marciniak, Hélène Obriot, Caroline Chevarin, Annie Nicole, Lucile Revillod, Konstantinos Charizanis, KuangYung Lee,(More)
Brain function is compromised in myotonic dystrophy type 1 (DM1), but the underlying mechanisms are not fully understood. To gain insight into the cellular and molecular pathways primarily affected, we studied a mouse model of DM1 and brains of adult patients. We found pronounced RNA toxicity in the Bergmann glia of the cerebellum, in association with(More)
The toxicity of expanded transcripts in myotonic dystrophy type 1 (DM1) is mainly mediated by the disruption of alternative splicing. However, the detailed disease mechanisms in the central nervous system (CNS) have not been fully elucidated. In our recent study, we demonstrated that the accumulation of mutant transcripts in the CNS of a mouse model of DM1(More)
  • 1