G. Saint-Girons

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
Continuous-wave operation, to as high as 7 degrees C, of 1.5-microm optically pumped vertical-external-cavity surface-emitting lasers is reported. The epitaxial structure, monolithically grown on InP by metal-organic chemical vapor deposition, consists of an InAlAs/GaInAlAs Bragg reflector, an InGaAs/InGaAsP active region, and an InP capping layer. The(More)
In this communication, we present strategies to implement novel or enhanced optoelectronic functionalities on silicon via the monolithic integration of functional oxides as active layers for nanophotonic devices. We focus on the use of ferroelectric oxides with naturally strong electro-optical coefficients such as BaTiO<sub>3</sub> (BTO) on SOI for the(More)
In this work we will present the objectives and last results of the FP7-ICT-2013-11-619456 SITOGA project. The SITOGA project will address the integration of transition metal dioxides (TMO) materials in silicon photonics and CMOS electronics. TMOs have unique electro-optical properties that will offer unprecedented and novel capabilities to the silicon(More)
Photonic devices enabling light modulation and switching are of major importance for modern telecommunication. Silicon-based electro-optic modulators are intensively investigated because of their direct compatibility to CMOS fabrication processes. However, the performances of Si based modulators are intrinsically limited, in terms of data transmission rate(More)
We propose an arsenic-capping/decapping method, allowing the growth of an epitaxial shell around the GaAs nanowire (NW) core which is exposed to an ambient atmosphere, and without the introduction of impurities. Self-catalyzed GaAs NW arrays were firstly grown on Si(111) substrates by solid-source molecular beam epitaxy. Aiming for protecting the active(More)
(2015) Integration of functional complex oxide nanomaterials on silicon. The combination of standard wafer-scale semiconductor processing with the properties of functional oxides opens up to innovative and more efficient devices with high value applications which can be produced at large scale. This review uncovers the main strategies that are successfully(More)
We have studied the growth of a SrTiO3 shell on self-catalyzed GaAs nanowires grown by vapor-liquid-solid assisted molecular beam epitaxy on Si(111) substrates. To control the growth of the SrTiO3 shell, the GaAs nanowires were protected using an arsenic capping/decapping procedure in order to prevent uncontrolled oxidation and/or contamination of the(More)
  • 1