Learn More
Measuring spike coding objectively is essential to establish whether activity recorded under one set of conditions is truly different from that recorded under another set of conditions. However, there is no generally accepted method for making such comparisons. Measuring firing frequency alone only partially reflects spike patterning. In this paper, novel(More)
Reading the spike coding of hypothalamic neurones presents a considerable challenge because they exhibit highly irregular firing patterns. Electrophysiologists working in the motor and sensory systems, in which neurones fire more regularly, have devised satisfactory methods to describe the firing of cells, although the statistical assumptions that underlie(More)
The suprachiasmatic nucleus is regarded as the main mammalian circadian pacemaker but evidence for rhythmic firing of single units in vivo has been obtained only recently. The present study was undertaken to determine if rhythms could be seen using measures of activity in addition to the mean spike frequency. We investigated whether there were changes in(More)
Novel approaches to the characterization of coding carried by spike trains are discussed. Measuring firing frequency alone may only partially reflect spike patterning, and can only quantify changes of the most obvious kind. We have devised a method that combines probabilistic and information approaches to quantify the variability of the interspike intervals(More)
The mammalian circadian pacemaker, the suprachiasmatic nucleus (SCN), contains receptors to the adipose tissue hormone leptin. In the present study, the effects of leptin on the electrophysiological activity of the SCN cells were characterised in vitro in rat brain slices. During extracellular recording, application of 20 nm leptin (n = 36) decreased mean(More)
Although Renshaw cells (RCs) were discovered over half a century ago, their precise role in recurrent inhibition and ability to modulate motoneuron excitability have yet to be established. Indirect measurements of recurrent inhibition have suggested only a weak modulatory effect but are limited by the lack of observed motoneuron responses to inputs from(More)
In this paper, we compare existing methods for quantifying the coding capacity of a spike train, and review recent developments in the application of information theory to neural coding. We present novel methods for characterising single-unit activity based on the perspective of a downstream neurone and propose a simple yet universally applicable framework(More)
Novel measures of coding based on interspike intervals were used to characterize the responses of supraoptic cells to osmotic stimulation. Infusion of hypertonic NaCl in vivo increased the firing rate of continuous (putative oxytocin) cells (Wilcoxon z= 3.84, P= 0.001) and phasic (putative vasopressin) cells (z= 2.14, P= 0.032). The irregularity of(More)
The fast inhibitory neurotransmitters glycine and GABA are co-localized in synaptic terminals of inhibitory interneurons in the spinal cord and co-released onto lumbar motoneurons in neonatal rats. We performed whole-cell voltage-clamp experiments on spinal cord preparations obtained from juvenile (P8-14) mice to determine whether inhibitory currents(More)
Novel measures of coding based on interspike intervals were used to characterise the rhythms of single unit activity in the supraoptic nucleus during the day/night cycle in urethane-anaesthetised rats in vivo. Both continuously firing and phasic cells showed significant (P < 0.001) diurnal rhythms of spike frequency and in the irregularity of firing, as(More)