Learn More
Measuring spike coding objectively is essential to establish whether activity recorded under one set of conditions is truly different from that recorded under another set of conditions. However, there is no generally accepted method for making such comparisons. Measuring firing frequency alone only partially reflects spike patterning. In this paper, novel(More)
Reading the spike coding of hypothalamic neurones presents a considerable challenge because they exhibit highly irregular firing patterns. Electrophysiologists working in the motor and sensory systems, in which neurones fire more regularly, have devised satisfactory methods to describe the firing of cells, although the statistical assumptions that underlie(More)
The suprachiasmatic nucleus is regarded as the main mammalian circadian pacemaker but evidence for rhythmic firing of single units in vivo has been obtained only recently. The present study was undertaken to determine if rhythms could be seen using measures of activity in addition to the mean spike frequency. We investigated whether there were changes in(More)
Communication between neurones in the central nervous system depends on synaptic transmission. The efficacy of synapses is determined by pre- and postsynaptic factors that can be characterized using quantal parameters such as the probability of neurotransmitter release, number of release sites, and quantal size. Existing methods of estimating the quantal(More)
Novel approaches to the characterization of coding carried by spike trains are discussed. Measuring firing frequency alone may only partially reflect spike patterning, and can only quantify changes of the most obvious kind. We have devised a method that combines probabilistic and information approaches to quantify the variability of the interspike intervals(More)
The mammalian circadian pacemaker, the suprachiasmatic nucleus (SCN), contains receptors to the adipose tissue hormone leptin. In the present study, the effects of leptin on the electrophysiological activity of the SCN cells were characterised in vitro in rat brain slices. During extracellular recording, application of 20 nm leptin (n = 36) decreased mean(More)
The effects of the application of melatonin in vitro on the electrophysiological activity of suprachiasmatic neurones were characterised using novel measures of coding based on the analysis of interspike intervals. Perfusion of 1 nM melatonin in vitro (n = 53) had no consistent effect on mean spike frequency (Wilcoxon's sign rank, z = -0.01, P = 0.989), but(More)
Novel measures of coding based on interspike intervals were used to characterize the responses of supraoptic cells to osmotic stimulation. Infusion of hypertonic NaCl in vivo increased the firing rate of continuous (putative oxytocin) cells (Wilcoxon z= 3.84, P= 0.001) and phasic (putative vasopressin) cells (z= 2.14, P= 0.032). The irregularity of(More)
Although Renshaw cells (RCs) were discovered over half a century ago, their precise role in recurrent inhibition and ability to modulate motoneuron excitability have yet to be established. Indirect measurements of recurrent inhibition have suggested only a weak modulatory effect but are limited by the lack of observed motoneuron responses to inputs from(More)
In this paper, we compare existing methods for quantifying the coding capacity of a spike train, and review recent developments in the application of information theory to neural coding. We present novel methods for characterising single-unit activity based on the perspective of a downstream neurone and propose a simple yet universally applicable framework(More)